• Title/Summary/Keyword: mathematical practice

Search Result 378, Processing Time 0.028 seconds

Derivation of Profit Curve by Cubic Cost Function and Mathematical Verification of Industry Life Cycle: Focused on All Industries in Korea (3차 비용함수에 의한 이익곡선 도출과 산업 라이프사이클의 수리적 검증: 우리나라 전 산업을 중심으로)

  • Hoo Seok Pai;Chae Kwan Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.481-496
    • /
    • 2023
  • Purpose: The main theme of this study is to derive a profit curve by a cubic cost function for nonlinear CVP analysis. According to the analytical approach to derive a nonlinear profit function in this study, it is possible with only the existing cost structure to calculate the profit maximization and downtime point sales unlike the classical CVP analysis. Furthermore, the profit curve by the mathematical model of this study could serve as a tool to quantify the qualitative evaluation of each stage of the industry life cycle. Methods: This study followed the mathematical approach from the cubic cost function model of microeconomics, and using real data of the Bank of Korea Results: The nonlinear profit function suggested by this study is as follows; ${\pi}(x)=-a\left(x-\frac{f}{1-v}\right)^3+(1-v)x-k$ where $a=\frac{1}{3}v\left(\frac{(1-v)}{f}\right)^2,k=f-a\left(1-\frac{f}{1-v \right)^3$ Conclusion: The process and results of this study would be able to contribute not only in practice of nonlinear CVP analysis required in the management accounting or financial management, but also in cost theory of microeconomics. Also, since the life cycle of all industries in Korea was verified to the growth or mature stage, decision makers should pay careful attention to determining life cycle stages and consider the profit curve by the average variable cost ratio over multi periods.

A Study on Pre-service Elementary Teachers' Mathematical Beliefs about the Nature of Mathematics and the Mathematics Learning (수학 교수 학습에 대한 예비초등교사의 신념 연구)

  • Kim, Jinho;Kang, Eun Kyung;Kim, Sangmee;Kwon, Sungyong;Park, Mangoo;Cho, SooYun
    • Education of Primary School Mathematics
    • /
    • v.22 no.1
    • /
    • pp.49-64
    • /
    • 2019
  • The purpose of the study was to examine the current status of prospective elementary school teachers' mathematical beliefs. 339 future elementary school teachers majoring in mathematics education from 4 universities participated in the study. The questionnaire used in the TEDS-M(Tatto et al., 2008) was translated into Korean for the purpose of the study. The researchers analyzed the pre-service elementary teachers' beliefs about the nature of mathematics and about mathematics learning. Also, the results of the survey was analyzed by various aspects. To determine differences between the groups, one-way analysis of variance was used. To check the relationship between beliefs about the nature of mathematics and about the mathematics learning, correlation analysis was used. The results of the study revealed that the pre-service elementary teachers tends to believe that the nature of mathematics as 'process of inquiry' rather than 'rules and procedures' which is a view that mathematics as ready-made knowledge. In addition, the pre-service elementary teachers tend to consider 'active learning' as desirable aspects in mathematics teaching-learning practice, while 'teacher's direction' was not. We found that there were statistically significant correlation between 'process of inquiry' and 'active learning' and between 'rules and procedures' and 'teacher direction'. On the basis of these results, more extensive and multifaced research on mathematical beliefs should be needed to design curriculum and plan lessons for future teachers.

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Nonlinear section model for analysis of RC circular tower structures weakened by openings

  • Lechman, Marek;Stachurski, Andrzej
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • This paper presents the section model for analysis of RC circular tower structures based on nonlinear material laws. The governing equations for normal strains due to the bending moment and the normal force are derived in the case when openings are located symmetrically in respect to the bending direction. In this approach the additional reinforcement at openings is also taken into account. The mathematical model is expressed in the form of a set of nonlinear equations which are solved by means of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box constraints on variables. The model is verified on the set of data encountered in engineering practice. The numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that the additional reinforcement at the openings increases the resistance capacity of the section by several percent.

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

Methods of Design Optimality Evaluation for Caisson Structural Systems (케이슨 구조계의 설계 최적성 평가)

  • Choi Min-Hee;Ryu Yeon-Sun;Cho Hyun-Man;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

The Digital Control of AC Voltage Controller for Efficiency Improvement of Induction Motor (유도전동기 효율개선을 위한 교류전압제어기의 디지탈제어)

  • Kwon, Dong-Bin;Lee, Seung-Chul;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.392-396
    • /
    • 1994
  • A method which improves the efficiency of induction motor by controlling the input voltage by the three phase AC voltage controller is studied at the sides of theory and practice. At first, the principle of decreasing the input power and improving the efficiency by adjusting the amplitude of the input voltage according to the load rate is shown. Secondarily, the mathematical model of the three phase AC voltage controller-induction motor system is drived to translate the dynamic characteristics. The validity of the dynamic model is verified by simulation. The new driving method is also proposed, which regulates the rated speed's driving by the speed estimation from the firing angle and the magnitude reverse induced-voltage information. As a result, the digital control system is constructed. Expermintal results show desirable characteristics of proposed system.

  • PDF

A Study on the Robust Design for Unconstrained Optimization Problems (제한조건이 없는 최적화 문제의 강건설계에 관한 연구)

  • 이권희;엄인섭;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2825-2836
    • /
    • 1994
  • The engineering optimization has been developed for the automatic design of engineering systems. Since the conventional optimum is determined without considering noise factors, applications to practical problems can be limited. Current design practice tends to account for these noises by the specification of closer tolerances or the use of safety factors. However, these approaches may be very expensive. Thus the consideration on the noises of design variables is needed for optimal design. A method is presented to find robust solutions for unconstrained optimization problems. The method is applied to discrete and continuous variables. The orthogonal array is utilized based on the Taguchi concept. Through mathematical proofs and numerical examples, it is verified that solutions from the suggested method are more insensitive than the conventional optimum within the range of variations for design variables.

A Bus Scheduling Problem with Multiple Objective Functions and Travel Time Constraint (여러 개의 목적함수와 운행시간제약을 가진 버스일정계획)

  • Kim, Woo-Je
    • IE interfaces
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2002
  • A bus scheduling problem with multiple objective functions and travel time constraint is to determine the allocation of buses to customer service requests minimizing the number of buses and travel costs under the travel time restriction for each bus. For the scheduling, we first represent the scheduling problem using a graph and develop a hierarchical approach. Second, we develop a mathematical model based algorithm for the scheduling problem including heuristic methods. We tested the performance of the algorithm on instances with real data. As a result, the total number of buses and travel costs are reduced over about 10% comparing with that of current practice at the company.

Efficient resource allocation mechanisms for large organizations

  • Kim, Hyung-Kee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.1 no.1
    • /
    • pp.127-138
    • /
    • 1976
  • Economists have become interested in the centralization and decentralization of planning, in the linking up of models into a homogenous model system, and in multi-level planning. In this study, Input/Output techniques used for explaining the resource allocation mechanisms to be more rational through detailed specifications of a large organization's objectives and explicit linking of centralization and decentralization to such objectives. Also the application of mathematical methods to the higher levels of planning in the optimal allocation resources can't fully describe the actual practice of planning. On the other hand, 1-0 techniques are standard in economic analysis and planning. However, the application procedures to the armed forces hold only when their assumptions are met and when their solutions are convergent. So, it is of limited applicability.

  • PDF