• Title/Summary/Keyword: mathematical machine

Search Result 383, Processing Time 0.029 seconds

Inference of Korean Public Sentiment from Online News (온라인 뉴스에 대한 한국 대중의 감정 예측)

  • Matteson, Andrew Stuart;Choi, Soon-Young;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.25-31
    • /
    • 2018
  • Online news has replaced the traditional newspaper and has brought about a profound transformation in the way we access and share information. News websites have had the ability for users to post comments for quite some time, and some have also begun to crowdsource reactions to news articles. The field of sentiment analysis seeks to computationally model the emotions and reactions experienced when presented with text. In this work, we analyze more than 100,000 news articles over ten categories with five user-generated emotional annotations to determine whether or not these reactions have a mathematical correlation to the news body text and propose a simple sentiment analysis algorithm that requires minimal preprocessing and no machine learning. We show that it is effective even for a morphologically complex language like Korean.

The Effect of Process Parameters on Sealing Quality for Ir-192 Radiation Source Capsule using Resistance Spot Welding (Ir-192 방사선원의 밀봉 용접부 품질에 미치는 저항용접 공정변수의 영향)

  • Han, In-Su;Son, Kwang-Jae;Lee, Young-Ho;Lee, You-Hwang;Lee, Jun-Sig;Jang, Kyung-Duk;Park, Ul-Jae;Park, Chun-Deuk
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • Ir-192 radiation sealed sources are widely employed to the therapeutic applications as well as the non-destructive testing. Production of Ir-192 sources requires a delicate but robust welding technique because it is employed in a high radioactive working environment. A GTA(Gas Tungsten Arc) welding technique is currently well established for this purpose. However, this welding method requires a frequent replacement of the electrode, which results in the delay of the production to take a preparatory action such as to isolate the radiation sources from the working place before getting access to the welding machine. Hence, a resistance welding technique is considered as an alternative method of the GTA welding technique. The advantages of resistance welding are high welding speed and high-rate production. Also it has very long life of electrode comparing to GTA welding. In this study, the resistance welding system and proper welding conditions were established for sealing Ir-192 source capsule. As a results of various experiments, it showed that electrode displacement can be employed as a indicator to predict welding quality. We proposed two mathematical models(linear and curvilinear) to estimate electrode displacement with process parameters such as applied force, welding current and welding time by using regression analysis method. Predicting results of both linear and curvilinear model were relatively good agreement with experiment.

Social aspects of computer based mathematics learning (컴퓨터를 활용한 수학학습에서의 사회적 측면)

  • 류희찬;권성룡
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.263-278
    • /
    • 1999
  • Computer with various powerful functions has profound potential for mathematics instruction and learning. As computer technology progress, its applicability to mathematics education become more comprehensive. Not only its functional development but various psychological positions also changed the way computer technology utilized in mathematics education. In behaviorist's perspective, computer viewed as a teaching machine and constructivist viewed computer as microworld where students could explore various mathematical contents. Both theoretical positions emphasized individual aspect of learning because behaviorist tried to individualize learning using computer and constructivist focused on the process of individual construction. But learning is not only a individual event but also a social event. Therefore we must take social aspect into account. This is especially important when it comes to computer based learning. So far, mathematics loaming with computer weighed individual aspect of loaming. Even in microworld environment, learning should be mediated by teacher and collaborative learning activities. In this aspect, the roles of teacher and peers are very important and socio-cultural perspective sheds light on the computer based learning. In socio-cultural perspective, the idea of scaffold is very important in learning and students gradually internalize the social dimension and scaffolding is gradually faded. And in the zone of proximal development, teacher and more competent peers guide students to formulate their own understanding. In sum, we must take following points into account. First of all, computer should not be viewed as a medium for individualized teaming. That is, interaction with computer should be catalyst for collaborative activities with peers. So, exploration in computer environment has to be followed by small group activities including small group discussion. Secondly, regardless of the role that computer would play, teacher should play a crucial role in computer based learning. This does not mean teacher should direct every steps in learning process. Teacher's intervention should help student construct actively. Thirdly, it is needed to conceptualize computer in learning situation as medium. This would affect learning situation and result in the change of pre-service and in-service teacher training. Computer to be used effectively in mathematics classroom, researches on assessment of computer based learning are needed.

  • PDF

A Study on the Design Technique of Linear Actuator by using CAE System (전산응용설계 시스템을 이용한 리니어 액츄에이터의 설계기법 고찰)

  • 이권헌;조제황;조경재;오금곤;김영동
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.106-113
    • /
    • 1997
  • In this paper, we introduce the design method using CAE(Computer Aided Engineering) which is profitable in the compatibility and standardization of the developed product and in the reduction of construction time and price to develop and design a machine equipment. Particularly, we select the standard model to design ot develop from the large machinery to the super precision one, extract the peculiar characters of the model by the close analysis of the physical and technical part, can predict the previous result of experimental characteristics on objective dimensions through the analogical mathematical analysis, and can induce the design model demanded by user investigating optimal data in advance. We present the analogical algorithms and process method of design factors and restriction factors in the systematization design with computer. Then we analyze step functions for each systematization equipment and induce the process of technical data with actuator model.

  • PDF

Vibration Control of Working Booms on Articulated Bridge Inspection Robots (교량검사 굴절로봇 작업붐의 진동제어)

  • Hwang, In-Ho;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.421-427
    • /
    • 2008
  • A robot crane truck is developed by the Bridge Inspection Robot Development Interface(BRIDI) for an automated and/or teleoperated bridge inspection. This crane truck looks similar to the conventional bucket crane, but is much smaller in size and light-weight. At the end of the telescoping boom which is 12m long, a robot platform is mounted which allows the operator to scan the bridge structure under the deck trough the camera. Boom vibration induced by wind and deck movement can cause serious problems in this scanning system. This paper presents a control system to mitigate such vibration of the robot boom. In the proposed control system, an actuator is installed at the end of the working boom. This control system is studied using a mathematical model analysis with LQ control algorithm and a scaled model test in the laboratory. The study indicates that the proposed system is efficient for the vibration control of the robot booms, thereby demonstrating its immediate applicability in the field.

Forecasting of the COVID-19 pandemic situation of Korea

  • Goo, Taewan;Apio, Catherine;Heo, Gyujin;Lee, Doeun;Lee, Jong Hyeok;Lim, Jisun;Han, Kyulhee;Park, Taesung
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.11.1-11.8
    • /
    • 2021
  • For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Analysis of Security Problems of Deep Learning Technology (딥러닝 기술이 가지는 보안 문제점에 대한 분석)

  • Choi, Hee-Sik;Cho, Yang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In this paper, it will analyze security problems, so technology's potential can apply to business security area. First, in order to deep learning do security tasks sufficiently in the business area, deep learning requires repetitive learning with large amounts of data. In this paper, to acquire learning ability to do stable business tasks, it must detect abnormal IP packets and attack such as normal software with malicious code. Therefore, this paper will analyze whether deep learning has the cognitive ability to detect various attack. In this paper, to deep learning to reach the system and reliably execute the business model which has problem, this paper will develop deep learning technology which is equipped with security engine to analyze new IP about Session and do log analysis and solve the problem of mathematical role which can extract abnormal data and distinguish infringement of system data. Then it will apply to business model to drop the vulnerability and improve the business performance.

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

Designing Reward Function for Cooperative Traffic Signal Control at Multi-intersection (다중 교차로에서 협동적 신호제어를 위한 보상함수 설계)

  • Bae, Yo-han;Jang, Jin-heon;Song, Moon-hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.110-113
    • /
    • 2022
  • Nowadays, breaking through the conventional traffic signal control method based on mathematical optimization, artificial intelligence began to be used in the area. In response to this trend, many studies are ongoing to figure out how to utilize AI technology properly for traffic signal optimization. They just simply focus on which method will work well besides lots of machine learning techniques and abandon the reward function engineering. In many cases, the reward function consists of the average delay of the vehicles in the intersection. However, this may lead to AI's misunderstanding about the traffic signal control: what AI regards as a good situation may not be realistic. Even the reward function itself may not meet the service level. Therefore, this study analyzes the problems of previous reward functions and will suggest how to reward function can be enhanced.

  • PDF