• Title/Summary/Keyword: mathematical logic

Search Result 299, Processing Time 0.024 seconds

A Constructive Modeling Process in the Form of 'Visual Mathematics' (시각수학과 원리 확장적 모델링 프로세스)

  • 김진희
    • Archives of design research
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 1999
  • Carlo H. Sequin, a computer scientist, became to know a sculpture of subtle space construction which was created by Brent Collins, a sculptor, and introduced it as 'Visual Mathematics' in a journal. Sequin who was able to deduce a basic logic of the construction, has developed a software which can be used for virtual modeling merely by substituting simple numerical values using a computer and supplied it to Collins. The present author who was exposed to their collaboration works through series of their papers published in the journal, Leonardo, introduces the Collins' sculptures and the author's modeling procedures of animation works both of which show many common things in visual characteristics and modeling expansion method. The author investigates the mathematical characteristics which is used as a basic motive of modeling and then supplied as a principal visual characteristics of a material. 'Modeling Development by Principle Expansion,' in which the expansion is developed on the base of space twist as for Collins whereas the space section as for the present author, is introduced in this study. With the same stream of the mutual reaction in 'arts, sciences and technology' which has been stressed with the development of sciences and technology, this modeling technology is suggested as a research theme which has a possiblity of various applications.

  • PDF

Optimal Number of Spare Engines and Modules for Aircraft Types (항공기 유형을 고려한 최적 예비엔진 및 모듈 소요 산출)

  • Jeon, Tae Bo;Sohn, Young Hwan;Kim, Ki Dong
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.35-46
    • /
    • 2017
  • Spare engine plays an important role for securing readiness of military strength during unexpected fault occurrences and field/depot planned maintenances. The purpose of this research is to present an approach towards the optimal number of spare engines/modules for diversity of aircraft types. We first reviewed two representative approaches, METRIC and meta model. We then investigated military aircrafts and categorized them into 5 types with regard to the engine type and number of engines/modules per aircraft. Through rigorous investigation of planned/non-planned maintenance of each type, we drew parameters and variables involved. As known, due to the complexity of the problem, it is impossible to develop a simple mathematical model with a closed form solution. Based on the airbase operation and maintenance logic with parameters/variable drawn, we developed a simulation model using ARENA well representing real field exercises. For the optimal solution, we applied OptQuest. It has shown that the program developed generates reliable results through a set of case examples.

Design of Efficient NTT-based Polynomial Multiplier (NTT 기반의 효율적인 다항식 곱셈기 설계)

  • Lee, SeungHo;Lee, DongChan;Kim, Yongmin
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.88-94
    • /
    • 2021
  • Public-key cryptographic algorithms such as RSA and ECC, which are currently in use, have used mathematical problems that would take a long time to calculate with current computers for encryption. But those algorithms can be easily broken by the Shor algorithm using the quantum computer. Lattice-based cryptography is proposed as new public-key encryption for the post-quantum era. This cryptographic algorithm is performed in the Polynomial Ring, and polynomial multiplication requires the most processing time. Therefore, a hardware model module is needed to calculate polynomial multiplication faster. Number Theoretic Transform, which called NTT, is the FFT performed in the finite field. The logic verification was performed using HDL, and the proposed design at the transistor level using Hspice was compared and analyzed to see how much improvement in delay time and power consumption was achieved. In the proposed design, the average delay was improved by 30% and the power consumption was reduced by more than 8%.

Modeling of Boiler Steam System in a Thermal Power Plant Based on Generalized Regression Neural Network (GRNN 알고리즘을 이용한 화력발전소 보일러 증기계통의 모델링에 관한 연구)

  • Lee, Soon-Young;Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.349-354
    • /
    • 2022
  • In thermal power plants, boiler models have been used widely in evaluating logic configurations, performing system tuning and applying control theory, etc. Furthermore, proper plant models are needed to design the accurate controllers. Sometimes, mathematical models can not exactly describe a power plant due to time varying, nonlinearity, uncertainties and complexity of the thermal power plants. In this case, a neural network can be a useful method to estimate such systems. In this paper, the models of boiler steam system in a thermal power plant are developed by using a generalized regression neural network(GRNN). The models of the superheater, reheater, attemperator and drum are designed by using GRNN and the models are trained and validate with the real data obtained in 540[MW] power plant. The validation results showed that proposed models agree with actual outputs of the drum boiler well.

Modeling and Intelligent Control for Activated Sludge Process (활성슬러지 공정을 위한 모델링과 지능제어의 적용)

  • Cheon, Seong-pyo;Kim, Bongchul;Kim, Sungshin;Kim, Chang-Won;Kim, Sanghyun;Woo, Hae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1905-1919
    • /
    • 2000
  • The main motivation of this research is to develop an intelligent control strategy for Activated Sludge Process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent flow rate, weather conditions, and etc. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP is generally controlled by a PID controller that consists of fixed proportional, integral, and derivative gain values. The PID gains are adjusted by the expert who has much experience in the ASP. The ASP model based on $Matlab^{(R)}5.3/Simulink^{(R)}3.0$ is developed in this paper. The performance of the model is tested by IWA(International Water Association) and COST(European Cooperation in the field of Scientific and Technical Research) data that include steady-state results during 14 days. The advantage of the developed model is that the user can easily modify or change the controller by the help of the graphical user interface. The ASP model as a typical nonlinear system can be used to simulate and test the proposed controller for an educational purpose. Various control methods are applied to the ASP model and the control results are compared to apply the proposed intelligent control strategy to a real ASP. Three control methods are designed and tested: conventional PID controller, fuzzy logic control approach to modify setpoints, and fuzzy-PID control method. The proposed setpoints changer based on the fuzzy logic shows a better performance and robustness under disturbances. The objective function can be defined and included in the proposed control strategy to improve the effluent water quality and to reduce the operating cost in a real ASP.

  • PDF

Frege's Critiques of Cantor - Mathematical Practices and Applications of Mathematics (프레게의 칸토르 비판 - 수학적 실천과 수학의 적용)

  • Park, Jun-Yong
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.1-30
    • /
    • 2009
  • Frege's logicism has been frequently regarded as a development in number theory which succeeded to the so called arithmetization of analysis in the late 19th century. But it is not easy for us to accept this opinion if we carefully examine his actual works on real analysis. So it has been often argued that his logicism was just a philosophical program which had not contact with any contemporary mathematical practices. In this paper I will show that these two opinions are all ill-founded ones which are due to the misunderstanding of the theoretical place of Frege's logicism in the context of contemporary mathematical practices. Firstly, I will carefully examine Cantorian definition of real numbers and Frege's critiques of it. On the basis of this, I will show that Frege's aim was to produce the purely logical definition of ratios of quantities. Secondly, I will consider the mathematical background of Frege's logicism. On the basis of this, I will show that his standpoint in real analysis was much subtler than what we used to expect. On the one hand, unlike Weierstrass and Cantor, Frege wanted to get such real analysis that could be universally applicable. On the other hand, unlike most mathematicians who insisted on the traditional conceptions, he would not depend upon any geometrical considerations in establishing real analysis. Thirdly, I will argue that Frege regarded these two aspects - the independence from geometry and the universal applicability - as those which characterized logic itself and, by logicism, arithmetic itself. And I will show that his conception of real numbers as ratios of quantities stemmed from his methodological maxim according to which the nature of numbers should be explained by the common roles they played in various contexts to which they applied, and that he thought that the universal applicability of numbers could not be adequately explicated without such an explanation.

  • PDF

A Study on Ontology of Digital Photo Image Focused on a Simulacre Concept of Deleuze & Baudrillard (디지털 사진 이미지의 존재론에 관한 연구 -들뢰즈와 보드리야르의 시뮬라크르 개념을 중심으로)

  • Gwon, Oh-sang
    • Cartoon and Animation Studies
    • /
    • s.51
    • /
    • pp.391-411
    • /
    • 2018
  • The purpose of this thesis is to examine ontology of digital photo image based on a Simulacre concept of Gilles Deleuze & Jean Baudrillard. Traditionally, analog image follows the logic of reproduction with a similarity with original target. Therefore, visual reality of analog image is illuminated, interpreted, and described in a subjective viewpoint, but does not deviate from the interpreted reality. However, digital image does not exist physically but exists as information that is made of mathematical data, a digital algorithm. This digital image is that newness of every reproduction, that is, essence of subject 'once existing there' does not exist anymore, and does not instruct or reproduce an outside target. Therefore, digital image does not have the similarity and does not keep the index instruction ability anymore. It means that this digital image is converted into a virtual area, and this is not reproduction of already existing but display of not existing yet. This not-being of digital image changes understanding of reality, existence, and imagination. Now, dividing it into reality and imagination itself is meaningless, and this does not make digital image with technical improvement but is a new image that is basically completely different from existing image. Eventually, digital image of the day passes step to visualize an existent target, nonexistent things have been visualized, and reality operates virtually. It means that digital image does not reproduce our reality but reproduces other reality realistically. In other words, it is a virtual reproduction producing an image that is not related to a target, that is to say Simulacre. In the virtually simulated world, reality has an infinite possibility, and it is not a picture of the past and present and has a possibility as the infinite virtual that is not fixed, is infinitely mutable, and is not actualized yet.

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

Analytical Study of Delay Model of Traffic Signal Progression Evaluation on Arterial (간선도로 신호연동화 효율의 평가를 위한 지체도 모형의 해석적 연구)

  • 김영찬;황연하
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • The quality of progression at signalized intersection has the largest potential effect. TRANSYT-7F is widely used to estimate the signal progression delay, but the progress of collecting and executing the compute program appears to be rather cumbersome. The research is to develop the analytical and progressing platoon delay model that is as simple as the methodology of HCM and familiar with the output of simulation model. The general approach to this research was conducted to examine the Rouphail and NCHRP 339 methodology together with the existing progression delay model (TRANSYT-7F. HCM). The scope is contained to be applicable only to cycles with no overflow queue and to obtain a comprehensive evaluation of the effects of changes in the quality of traffic signal progression on stopped delay and to be analyzed a simple mathematical method. The principle assumption for this model is that secondary flows is dispersed and partly mixed with average flow of the primary progressed flow. A second assumption is that through flow is consisted with the part of saturation flow at the front of it and the part of average flow at the rear of it. The delay equations vary for two arrival. The conclusion of this study could be summarized as 1)The evaluation of this model was consistently similar to that of TRANSYT-7F, 2) Platoon pattern has the real traffic flow characteristics. 3) The computing process of progression delay is made to have simple logic and easy calculation by integration, 4) This model could be estimated to be applied in almost all case.

  • PDF