Discrete mathematics is as important as it was reformed as an optional subject in the middle school and high school in the 7th national curriculum. There are a lot of studies about discrete mathematics in the middle course but studies about it in elementary course has little performed. Therefore, the purpose of this paper is to analyze the concept of discrete mathematics, which is hidden in the mathematics textbook of elementary school and to develop the learning materials of discrete mathematics. Through this, it would make the students to have the sharp insight in their daily lift and mathematical experience by learning: the mathematical inquiry and adaptation.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.3
/
pp.641-654
/
2011
In order to grow students' rational and creative problem-solving ability which is one of the primary goals in mathematics education. students' proper understanding of mathematical concepts, principles, and rules must be backed up as its foundational basis. For the relevant teaching strategies. National Mathematics Curriculum advises that students should be allowed to discover and justify the concepts, principles, and rules by themselves not only through the concrete hands-on activities but also through inquiry-based activities based on the learning topics experienced from the diverse phenomena in their surroundings. Hereby, this paper, firstly, looks into both the meaning and the inductive reasoning process of mathematical principles and rules, secondly, suggest "learning through discovery teaching method" for the proper teaching of the mathematical principles and rules recommended by the National Curriculum, and, thirdly, examines the possible discovery-led teaching strategies using inductive methods with the related matters to be attended to.
During the past decades, there has been a fundamental change in the objectives and nature of mathematics education, as well as a shift in research paradigms. The changes in mathematics education emphasize learning mathematics from realistic situations, students' invention or construction solution procedures, and interaction with other students of the teacher. This shifted perspective has many similarities with the theoretical . perspective of Realistic Mathematics Education (RME) developed by Freudental. The RME theory focused the guide reinvention through mathematizing and takes into account students' informal solution strategies and interpretation through experientially real context problems. The heart of this reinvention process involves mathematizing activities in problem situations that are experientially real to students. It is important to note that reinvention in a collective, as well as individual activity, in which whole-class discussions centering on conjecture, explanation, and justification play a crucial role. The overall purpose of this study is to examine the developmental research efforts to adpat the instructional design perspective of RME to the teaching and learning of differential equation is collegiate mathematics education. Informed by the instructional design theory of RME and capitalizes on the potential technology to incorporate qualitative and numerical approaches, this study offers as approach for conceptualizing the learning and teaching of differential equation that is different from the traditional approach. Data were collected through participatory observation in a differential equations course at a university through a fall semester in 2003. All class sessions were video recorded and transcribed for later detailed analysis. Interviews were conducted systematically to probe the students' conceptual understanding and problem solving of differential equations. All the interviews were video recorded. In addition, students' works such as exams, journals and worksheets were collected for supplement the analysis of data from class observation and interview. Informed by the instructional design theory of RME, theoretical perspectives on emerging analyses of student thinking, this paper outlines an approach for conceptualizing inquiry-oriented differential equations that is different from traditional approaches and current reform efforts. One way of the wars in which thus approach complements current reform-oriented approaches 10 differential equations centers on a particular principled approach to mathematization. The findings of this research will provide insights into the role of the mathematics teacher, instructional materials, and technology, which will provide mathematics educators and instructional designers with new ways of thinking about their educational practice and new ways to foster students' mathematical justifications and ultimately improvement of educational practice in mathematics classes.
Mathematical justification is the process through which one's claim is validated to be true based on proper and trustworthy data. But it serves as a catalyst to facilitate mathematical discussions and communicative interactions among students in mathematics classrooms. This study is designed to investigate the effects of mathematical justification on students' problem-solving and communicative processes occurred in a mathematics classroom. In order to fulfill the purpose of this study, mathematical problem-solving classes were conducted. Mathematical justification processes and communicative interactions recorded in problem understanding activity, individual student inquiry, small and whole group discussions are analyzed. Based on the analysis outcomes, the students who participated in mathematical justification activities are more likely to find out various problem-solving strategies, to develop efficient communicative skills, and to use effective representations. In addition, mathematical justification can be used as an evaluation method to test a student's mathematical understanding as well as a teaching method to help develop constructive social interactions and positive classroom atmosphere among students. The results of this study would contribute to strengthening a body of research studying the importance of teaching students mathematical justification in mathematics classrooms.
This paper explores how unequally successful mathematics practices were constructed in the two elementary mathematics classrooms. The interview data that pertain to the two teachers' personal reflections on the influences on their professional development were used as a source of inquiry to identify the underlying factors that might account for the differences and the similarities in implementing reform ideals in teaching mathematics. This affords not only exploration of the challenges of moving teaching practices toward student-centered approaches but also insight of the processes of developing mathematics teaching practices through teachers\`own career paths.
This study aims to reflect the origin and the meaning of open education and to derive pedagogical principles for open mathematics education. Open education originates from Socrates who was the founder of discovery learning and has been developed by Locke, Rousseau, Froebel, Montessori, Dewey, Piaget, and so on. Thus open education is based on Humanism and Piaget's psychology. The aim of open education consists in developing potentials of children. The characteristics of open education can be summarized as follows: open curriculum, individualized instruction, diverse group organization and various instruction models, rich educational environment, and cooperative interaction based on open human relations. After considering the aims and the characteristics of open education, this study tries to suggest the aims and the directions for open mathematics education according to the philosophy of open education. The aim of open mathematics education is to develop mathematical potentials of children and to foster their mathematical appreciative view. In order to realize the aim, this study suggests five pedagogical principles. Firstly, the mathematical knowledge of children should be integrated by structurizing. Secondly, exploration activities for all kinds of real and concrete situations should be starting points of mathematics learning for the children. Thirdly, open-ended problem approach can facilitate children's diverse ways of thinking. Fourthly, the mathematics educators should emphasize the social interaction through small-group cooperation. Finally, rich educational environment should be provided by offering concrete and diverse material. In order to make open mathematics education effective, some considerations are required in terms of open mathematics curriculum, integrated construction of textbooks, autonomy of teachers and inquiry into children's mathematical capability.
This study aims to suggest a model of task development for mathematics performance assessment and to develop performance tasks for the fifth graders in the primary school on the basis of this model. In order to achieve these aims, the following inquiry questions were set up: (1) to develop open-ended tasks and projects for the fifth graders, (2) to develop checklists for measuring the abilities of mathematical reasoning, problem solving, connection, communication of the fifth graders more deeply when performance assessment tasks are implemented and (3) to examine the appropriateness of performance tasks and checklists and to modify them when is needed through applying these tasks to pupils. The consequences of applying some tasks and analysing some work samples of pupils are as follows. Firstly, pupils need more diverse thinking ability. Secondly, pupils want in the ability of analysing the meaning of mathematical concepts in relation to real world. Thirdly, pupils can calculate precisely but they want in the ability of explaining their ideas and strategies. Fourthly, pupils can find patterns in sequences of numbers or figures but they have difficulty in generalizing these patterns, predicting and demonstrating. Fifthly, pupils are familiar with procedural knowledge more than conceptual knowledge. From these analyses, it is concluded that performance tasks and checklists developed in this study are improved assessment tools for measuring mathematical abilities of pupils, and that we should improve mathematics instruction for pupils to understand mathematical concepts deeply, solve problems, reason mathematically, connect mathematics to real world and other disciplines, and communicate about mathematics.
Journal of The Korean Association For Science Education
/
v.34
no.2
/
pp.63-78
/
2014
Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.
Kim, Jinho;Kang, Eun Kyung;Kim, Sangmee;Kwon, Sungyong;Park, Mangoo;Cho, SooYun
Education of Primary School Mathematics
/
v.22
no.1
/
pp.49-64
/
2019
The purpose of the study was to examine the current status of prospective elementary school teachers' mathematical beliefs. 339 future elementary school teachers majoring in mathematics education from 4 universities participated in the study. The questionnaire used in the TEDS-M(Tatto et al., 2008) was translated into Korean for the purpose of the study. The researchers analyzed the pre-service elementary teachers' beliefs about the nature of mathematics and about mathematics learning. Also, the results of the survey was analyzed by various aspects. To determine differences between the groups, one-way analysis of variance was used. To check the relationship between beliefs about the nature of mathematics and about the mathematics learning, correlation analysis was used. The results of the study revealed that the pre-service elementary teachers tends to believe that the nature of mathematics as 'process of inquiry' rather than 'rules and procedures' which is a view that mathematics as ready-made knowledge. In addition, the pre-service elementary teachers tend to consider 'active learning' as desirable aspects in mathematics teaching-learning practice, while 'teacher's direction' was not. We found that there were statistically significant correlation between 'process of inquiry' and 'active learning' and between 'rules and procedures' and 'teacher direction'. On the basis of these results, more extensive and multifaced research on mathematical beliefs should be needed to design curriculum and plan lessons for future teachers.
The revised mathematics education curriculum in 2007 decided to introduce mathematics workbooks to the textbook system, which were supplemental textbooks to support mathematics teachers' teaching and students' learning in level-based classroom. This study is to find the field status whether the middle school mathematics workbooks are currently used in the school to be in line with the original intention and purpose and to discuss the improvement direction and effective utilization idea which modification and amendment shall be made for the effective utilization in the field. To achieve the goal of this study, the inquiry survey was made from 75 middle school teachers of the 1st, 2nd and 3rd grade in the middle schools where the moving classing for each level(or class in each level)has been performed with provision of the questionnaire sheet for the understanding of the teachers for the utilization status of the mathematics workbook to solve such study task.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.