• 제목/요약/키워드: mathematical history

검색결과 487건 처리시간 0.023초

격자론의 기원

  • 홍영희
    • 한국수학사학회지
    • /
    • 제12권2호
    • /
    • pp.15-23
    • /
    • 1999
  • This paper deals with the origin of the concept of lattices in mathematics and its development until 1930's. Although it is purely mathematical, its formation is due to the development of symbolic logic Further, logicians were mostly concerned about how to imitate the methods and duplicate the problems of algebra but not the application to mathematics. The first purely mathematical approach was given by Dedekind and his results were neglected and then reappeared in 1930's.

  • PDF

콜모고로프와 수학적 재능에 관한 그의 이론

  • 한인기
    • 한국수학사학회지
    • /
    • 제14권1호
    • /
    • pp.73-82
    • /
    • 2001
  • In this article we studied one of the greatest mathematicians and pedagogues, A.N. Kolmogorov. He wrote about five hundreds o( books and articles in the fields of pure mathematics and mathematics education. In this paper we in detail introduced Kolmogorov's history of mathematics education and his theory of mathematical abilities, and elaborated this theory. In addition, we suggested some materials which are aimed to develop mathematical abilities in correspondence to the theory of Kolmogorov.

  • PDF

수학에서의 지식의 변화와 수학혁명 (Changes of Mathematical Knowledge and Mathematical Revolution)

  • 박창균
    • 한국수학사학회지
    • /
    • 제23권4호
    • /
    • pp.17-30
    • /
    • 2010
  • 본 논문의 목적은 '혁명' 이라는 개념을 검토함으로써 '수학혁명'의 유형을 분류하고, 수학혁명을 위한 조건들을 제시하려는데 있다. 또한 수학혁명의 유형과 수학혁명을 판정하는 기준이 어떻게 연관되는지를 탐구하여 수학의 역사에 나타난 수학지식의 변화 중 몇 가지 사례들이 어떤 종류의 혁명이었는지를 알아본다.

Co-existence of History of Mathematics and Modern Mathematics

  • Banihashemi, Saied Seyed Agha
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2010년도 제44회 전국수학교육연구대회
    • /
    • pp.261-267
    • /
    • 2010
  • Both history of mathematics and education of mathematics is old subject. The question arises wether can these two important subjects can help each other or not. Unfortunately this idea made mathematics society into two groups; one has idea that history of mathematics can help education of mathematics and other group has idea that not only history of mathematics can not help education of mathematics but also it makes some confusion. In this article the author is going to do some comparison and take some conclusion that history of mathematics can make education of mathematics so active and interesting.

  • PDF

Integrating History of Mathematics in Teaching Cartesian Coordinate Plane: A Lesson Study

  • MENDOZA, Jay-R M.;ALEGARIO, Joan Marie T.;BLANCO, Miguel G.;De TORRES, Reynold;IGAY, Roselyn B.;ELIPANE, Levi E.
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제20권1호
    • /
    • pp.39-49
    • /
    • 2016
  • The History of Mathematics (HOM) was integrated in teaching the Cartesian Coordinate Plane (CCP) to Grade Seven learners of Moonwalk National High School using Lesson Study. After the lesson was taught, there were three valuable issues emerged: (1) HOM is a Springboard and/or a Medium of Motivation in Teaching CCP; (2) The History of CCP Opened a Wider Perspective about Its Real-life Application in the Modern World (3) Integration of History Developed a Sense of Purpose and an Appreciation of Mathematics Among Learners. Feedbacks solicited from the learners showed that they have understanding of the importance of studying Mathematics after they learned the life and contributions of Rene Descartes to Mathematics. Hence, integration of history plays a vital role in developing positive attitudes among learners towards Math.

수학 문제 해결의 역사와 모델링 관점 (The History of Mathematical Problem Solving and the Modeling Perspective)

  • 이대현;서관석
    • 한국수학사학회지
    • /
    • 제17권4호
    • /
    • pp.123-132
    • /
    • 2004
  • 이 글에서는 20세기의 문제 해결의 역사에 대하여 개관하고, 21세기에 새로운 경향으로 주목받고 있는 모델링 관점에서의 수학 문제 해결에 대하여 알아보았다. 전통적인 문제 해결에서는 상황과 분리되어 있는 문제의 조건을 수학적 표현으로 바꾸는 번안 기술의 습득을 주요 관심사로 다루었다. 반면에, 모델링 관점에서 문제 해결은 해결할 필요가 있는 현실적인 문제 상황에서 출발하여 수학적인 정리 수단으로 재조직하고, 수학적 상황에서 문제를 해결하여 다시 실제 현상에 적용하는 과정을 따른다. 따라서, 학생들은 문제를 해결해 가는 과정에서 수학화를 경험하게 되고, 수학을 배우게 되는 이점이 있다.

  • PDF

Measurement Based on Socio-Cultural Background

  • Choi-Koh, Sang-Sook
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제5권2호
    • /
    • pp.99-106
    • /
    • 2001
  • We have known that ethno-mathematics is a field of a study that emphasizes the socio-cultural environment in which a person "does" mathematics as stated by D'Ambrosio(Ethno mathematics and its Place in the History and Pedagogy of Mathematics, 1985). Measurement is an important mathematical topic, which leads students to relate math to the eal-world applications, particularly with socio-cultural aspects. The purpose of this article is to review the history of the measurement system in Korea briefly and to adapt the measurement system into real-world problems so that children acquire measurement knowledge in the most natural way.

  • PDF

오일러의 수학신학 (Euler's Mathematical Theology)

  • 현우식
    • 한국수학사학회지
    • /
    • 제25권2호
    • /
    • pp.11-21
    • /
    • 2012
  • 이 학제적 연구는 오일러의 수학적 증명과 그의 신학적 입장의 상관성을 조명해 보기 위한 탐색적 시도이다. 이를 위하여 먼저 오일러의 신학적 입장이 논의된다. 그 다음으로 수학신학적 그리스도론으로서 오일러의 항등식이 함의하는 의미가 논의된다.

수학의 철학적 사유 (Philosophical Thinking in Mathematics)

  • 김용운
    • 한국수학사학회지
    • /
    • 제1권1호
    • /
    • pp.14-32
    • /
    • 1984
  • The concepts of zero, minus, infinite, ideal point, etc. are not real existence, but are pure mathematical objects. These entities become mathematical objects through the process of a philosophical filtering. In this paper, the writer explores the relation between natural conditions of different cultures and philosophies, with its reference to fundamental philosophies and traditional mathematical patterns in major cultural zones. The main items treated in this paper are as follows: 1. Greek ontology and Euclidean geometry. 2. Chinese agnosticism and the concept of minus in the equations. 3. Transcendence in Hebrews and the concept of infinite in modern analysis. 4. The empty and zero in India.

  • PDF

귀납법과 수학적 귀납법 (On Induction and Mathematical Induction)

  • 고영미
    • 한국수학사학회지
    • /
    • 제35권2호
    • /
    • pp.43-56
    • /
    • 2022
  • The 21st century world has experienced all-around changes from the 4th industrial revolution. In this developmental changes, artificial intelligence is at the heart, with data science adopting certain scientific methods and tools on data. It is necessary to investigate on the logic lying underneath the methods and tools. We look at the origins of logic, deduction and induction, and scientific methods, together with mathematical induction, probabilistic method and data science, and their meaning.