• Title/Summary/Keyword: maternal gene

Search Result 156, Processing Time 0.029 seconds

Genotype Frequencies of the Sex-Linked Feathering and Their Phenotypes in Domestic Chicken Breeds for the Establishment of Auto-Sexing Strains (자가성감별 계통 조성을 위한 국내 토종 닭의 깃털 조만성 양상과 유전자형 빈도)

  • Sohn, Sea-Hwan;Park, Dhan-Bee;Song, Hae-Ran;Cho, Eun-Jung;Kang, Bo-Seok;Suh, Ok-Suk
    • Journal of Animal Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.267-274
    • /
    • 2012
  • The method of sexing based on differences in the rate of feather growth provides a convenient and inexpensive approach. The locus of feather development gene (K) is located on the Z chromosome and can be utilized to produce phenotypes that distinguish between the sexes of chicks at hatching. To establish the auto-sexing native chicken strains, this study analyzed the genotype frequency of the feathering in domestic chicken breeds. The method of classification of slow- and rapid-feathering chickens was also investigated. In the slow-feathering chicks, the coverts were either the same length or longer than the primary wing feathers at hatching. However, the rapid-feathering chicks had the primary wing feathers that were longer than the coverts. The growth pattern of tail feather also distinctively differed between the rapid- and slow-feathering chicks after 5-days. The accuracy of wing feather sexing was about 98% compared with tail sexing. In domestic chicken breeds, Korean Black Cornish, Korean Rhode Island Red, and Korean Native Chicken-Red had both dominant (K) and recessive ($k^+$) feathering genes. The other breeds of chickens, Korean Brown Cornish, Ogol, White Leghorn, Korean Native Chicken-Yellow, -Gray, -White and -Black had only the recessive feathering gene ($k^+$). Consequently, feather sexing is available using the domestic chicken breeds. Establishing the maternal stock with dominant gene (K-) and paternal stock with recessive gene ($k^+k^+$), the slow-feathering characteristic is passed from mothers to their sons, and the rapid-feathering characteristic is inherited by daughters from their fathers.

RAG-1 and IgM Genes, Markers for Early Development of the Immune System in Olive Flounder, Paralichthys olivaceus

  • Lee, Jang-Wook;Yang, Hyun;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.18 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • Fish larvae are immediately exposed to microbes from hatching to maturation of their lymphoid organs, therefore effective innate mechanisms is very important for survival. However, the knowledge of the development of immune system in fish is limited and in demand now. In vertebrates, recombination-activating gene 1 (RAG-1) and immunoglobulin M (IgM) have been considered as very useful markers of the physiological maturity of the immune system. In this study, the expression of the both genes was assessed throughout the early developmental stages of olive flounder larvae (5-55 dph) and used as markers to follow the development of immune system. RAG-1 and IgM mRNA expression was detectable at 5 dph and remained so until 55 dph. These patterns of expression may suggest that the olive flounder start to develop its function around 5 dph. Tissue distribution was found that both genes mRNAs are only expressed in the immune-related organ such as spleen, kidney and gill. The early detection of IgM mRNA led to the investigation of its presence in oocytes. Both RAG-1 and IgM mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. The biological significance of such a phenomenon remains to be investigated.

EFFECT OF LONG TERM SELECTION ON GENETIC PARAMETERS OF ECONOMIC TRAITS IN WHITE LEGHORN

  • Sharma, D.;Johari, D.C.;Kataria, M.C.;Singh, B.P.;Singh, D.P.;Hazary, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.4
    • /
    • pp.455-459
    • /
    • 1996
  • The genetic parameters for various economic traits were estimated in a White Leghorn population selected for part period egg production over 16 generations. In early part of selection, egg number had moderate to high heritability (0.26 to 0.51) while age at sexual maturity, egg weight and body weight at 20 and 40 weeks of age had high heritability (0.54 to 0.83). The sire component heritability for all the traits except 20 week body weight declined in later periods of selection. Sex linked gene effects for egg number and age at sexual maturity were more important in early periods of selection in comparison to the later periods, while maternal effects remained important for 20 week body weight in all the periods. Egg number was negatively correlated with egg weight ($r_{G(S)}=-0.36$), age at sexual maturity ($r_{G(S)}=-0.84$) and 40 week body weight ($r_{G(S)}=-0.84$), while it was positively correlated with 20 week body weight ($r_{G(S)}=-0.34$) in base generation. The genetic association between egg number and 40 week body weight changed not only in magnitude but also in direction in later periods. The genetic correlation of egg number with egg weight as well as with age at sexual maturity also decreased in magnitude in later periods of selection.

Population Structure of the Exotic Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae) in Korea (한국에 서식하는 아메리카동애등에 Hermetia illucens (Diptera: Stratiomyidae)의 개체군 구조)

  • Park, Soyeon;Choi, Hansu;Choi, Ji-young;Jeong, Gilsang
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.6
    • /
    • pp.520-528
    • /
    • 2017
  • The exotic black soldier fly, Hermetia illucens, has been paid much attention as an excellent organic matter decomposer. We conducted the nationwide survey and the population genetic study using a mitochondrial cytochrome C oxidase 1 gene to understand its genetic diversity and distribution pattern in Korea. The results show that it has successfully settled down in South Korea and there are only 10 haplotypes and the populations of the insect are highly differentiated. The results may indicate that their dispersal was restrained probably due to their short distance flying tendency since their introduction and settlement of only few maternal lineages with certain genotypes in Korea.

Pre-Natal Epigenetic Influences on Acute and Chronic Diseases Later in Life, such as Cancer: Global Health Crises Resulting from a Collision of Biological and Cultural Evolution

  • Trosko, James E.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.394-407
    • /
    • 2011
  • Better understanding of the complex factors leading to human diseases will be necessary for both long term prevention and for managing short and long-term health problems. The underlying causes, leading to a global health crisis in both acute and chronic diseases, include finite global health care resources for sustained healthy human survival, the population explosion, increased environmental pollution, decreased clean air, water, food distribution, diminishing opportunities for human self-esteem, increased median life span, and the interconnection of infectious and chronic diseases. The transition of our pre-human nutritional requirements for survival to our current culturally-shaped diet has created a biologically-mismatched human dietary experience. While individual genetic, gender, and developmental stage factors contribute to human diseases, various environmental and culturally-determined factors are now contributing to both acute and chronic diseases. The transition from the hunter-gatherer to an agricultural-dependent human being has brought about a global crisis in human health. Initially, early humans ate seasonally-dependent and calorically-restricted foods, during the day, in a "feast or famine" manner. Today, modern humans eat diets of caloric abundance, at all times of the day, with foods of all seasons and from all parts of the world, that have been processed and which have been contaminated by all kinds of factors. No longer can one view, as distinct, infectious agent-related human acute diseases from chronic diseases. Moreover, while dietary and environmental chemicals could, in principle, cause disease pathogenesis by mutagenic and cytotoxic mechanisms, the primary cause is via "epigenetic", or altered gene expression, modifications in the three types of cells (e.g., adult stem; progenitor and terminally-differentiated cells of each organ) during all stages of human development. Even more significantly, alteration in the quantity of adult stem cells during early development by epigenetic chemicals could either increase or decrease the risk to various stem cell-based diseases, such as cancer, later in life. A new concept, the Barker hypothesis, has emerged that indicates pre-natal maternal dietary exposures can now affect diseases later in life. Examples from the studies of the atomic bomb survivors should illustrate this insight.

Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics

  • Tarekegn, Getinet Mekuriaw;Ji, Xiao-yang;Bai, Xue;Liu, Bin;Zhang, Wenguang;Birungi, Josephine;Djikeng, Appolinaire;Tesfaye, Kassahun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1393-1400
    • /
    • 2018
  • Objective: This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. Methods: We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian${\times}$Barka cross bred cattle populations. Results: In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were $0.7540{\pm}0.043$ and $0.0010{\pm}0.000$, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance ($F_{ST}$) was 0.049539 with the highest ($F_{ST}=0.1245$) and the lowest ($F_{ST}=0.011$) $F_{ST}$ distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. Conclusion: Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus.

Aberrant Expression of Pim-3 Promotes Proliferation and Migration of Ovarian Cancer Cells

  • Zhuang, Hao;Zhao, Man-Yin;Hei, Kai-Wen;Yang, Bai-Cai;Sun, Li;Du, Xue;Li, Yong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3325-3331
    • /
    • 2015
  • Pim kinase-3(Pim-3), a member of serine/threonine protein kinases, has been implicated in multiple human cancers and involved in Myc-induced tumorigenesis. However, little is known regarding its expression and biological function in human ovarian cancer. In this study we showed that the clinical significance and biological functions of Pim-3 in ovarian cancer and found that higher Pim-3 mRNA level are detected in ovarian cancer tissues than those in normal ovarian tissues. There are significant correlations between higher Pim-3 expression levels with the FIGO stage, histopathological subtypes, and distant metastasis in ovarian cancer patients. Lentivirus-mediated gene overexpression of Pim-3 significantly promotes the proliferation and migration of SKOV3 cell lines. Furthermore, MACC1 and Pim-3 expression were significantly correlated in human ovarian cancer cells, and overexpression of Pim-3 in ovary cancer cells increased MACC1 mRNA and protein expression. The data indicate that Pim-3 acts as a putative oncogene in ovary cancer and could be a viable diagnostic and therapeutic target for ovarian cancer.

Extent of linkage disequilibrium and effective population size of the Landrace population in Korea

  • Shin, Donghyun;Kim, Sung-Hoon;Park, Joowan;Lee, Hak-Kyo;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1078-1087
    • /
    • 2018
  • Objective: The genetic diversity of the Landrace population, a representative maternal pig breed in Korea, is important for genetic improvement. Previously, the effective population size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, we aimed to use single nucleotide polymorphism (SNP) data to characterize linkage disequilibrium (LD) and the Ne of the Korean Landrace population. Methods: We genotyped 1,128 Landrace individuals from three representative Korean major grand-grand-parent (GGP) farms using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 SNPs located across all autosomes and mitochondrial and sex chromosomes. We estimated the expected LD and current Ne, as well as ancestral Ne. Results: In the Korean Landrace population, the mean LD ($r^2$) of 3.698 million SNP pairs was $0.135{\pm}0.204$. The mean $r^2$ decreased slowly with as the distance between SNPs increased, and remained constant beyond 3 Mb. According to the $r^2$ calculations, 8,085 of 3.698 million SNP pairs were in complete LD. The current Ne (${\pm}$standard deviation) of the Korean Landrace population is approximately 92.27 [79.46; 105.07] individuals. The ancestral Ne exhibited a slow and steady decline from 186.61 to 92.27 over the past 100 generations. Additionally, we observed more a rapid Ne decrease from the past 20 to 10 generations ago, compared with other intervals. Conclusion: We have presented an overview of LD and the current and ancestral Ne values in the Korean Landrace population. The mean LD and current Ne for the Korean Landrace population confirm the genetic diversity and reflect the history of this pig population in Korea.

Effective Application of Diagnostics for Bovine Leukemia Virus in Dairy Cattle (젖소에서 소 백혈병 진단법의 효과적 활용)

  • Youn, Choong-Keun;Jung, Ho-Kyoung;Sunwoo, Sun-Young;Lyoo, Young-S.
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.402-406
    • /
    • 2010
  • Bovine leukemia virus (BLV) is a delta-retrovirus which causes chronic lymphocytosis in cattle. BLV infections have been divided into two groups such as enzootic bovine leukosis (EBL) and sporadic bovine leukosis (SBL) according to the clinical symptoms in infected cattle. The conventional detection method of BLV was hematological procedure which is determining lymphocytosis in the suspected animals. Recently several sensitive methods were developed to detect antibody to BLV and nucleic acid of the BLV from infected cattle. In this study we have compared the difference of positive rates between agar gel immunodiffusion (AGID) and enzyme linked immunosorbent assay (ELISA) which are using for BLV antibody detection methods. The positive detection rate of ELISA test was 7.4% greater than the positive rate of AGID. The discrepancy of the positive rate between ELISA and AGID were showed in the group of age over one year old to under three year old group. The result from each test agreed very well in the group of over 5 year old cattles. The serological test is very useful method to select the infected cattle for the eradication or control of the disease in the infected herd. But it has a limit by interference of the maternal antibody from the cow of under 6 month old. This study shows that 16.2% of these ages group showed BLV gene positive by polymerase chain reaction (PCR) method. The result suggests that ELISA test need to be used with PCR to clarify misinterpretation of positive animals by antibody response due to the natural infection from maternally derived antibody in calves of under 6 months old.

S100A4 Gene is Crucial for Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice

  • Zhang, Yin-Hua;Ma, De-Qiang;Ding, De-Ping;Li, Juan;Chen, Lin-Li;Ao, Kang-Jian;Tian, You-You
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1064-1071
    • /
    • 2018
  • Purpose: To explore the influence of S100 calcium binding protein A4 (S100A4) knockout (KO) on methionine-choline-deficient (MCD) diet-induced non-alcoholic fatty liver disease (NAFLD) in mice. Materials and Methods: S100A4 KO mice (n=20) and their wild-type (WT) counterparts (n=20) were randomly divided into KO/MCD, Ko/methionine-choline-sufficient (MCS), WT/MCD, and WT/MCS groups. After 8 weeks of feeding, blood lipid and liver function-related indexes were measured. HE, Oil Red O, and Masson stainings were used to observe the changes of liver histopathology. Additionally, expressions of S100A4 and proinflammatory and profibrogenic cytokines were detected by qRT-PCR and Western blot, while hepatocyte apoptosis was revealed by TUNEL staining. Results: Serum levels of aminotransferase, aspartate aminotransferase, triglyceride, and total cholesterol in mice were increased after 8-week MCD feeding, and hepatocytes performed varying balloon-like changes with increased inflammatory cell infiltration and collagen fibers; however, these effects were improved in mice of KO/MCD group. Meanwhile, total NAFLD activity scores and fibrosis were lower compared to WT+MCD group. Compared to WT/MCS group, S100A4 expression in liver tissue of WT/MCD group was enhanced. The expression of proinflammatory ($TGF-{\alpha}$, $IL-1{\beta}$, IL-6) and profibrogenic cytokines ($TGF-{\beta}1$, COL1A1, ${\alpha}-SMA$) in MCD-induced NAFLD mice were increased, as well as apoptotic index (AI). For MCD group, the expressions of proinflammatory and profibrogenic cytokines and AI in KO mice were lower than those of WT mice. Conclusion: S100A4 was detected to be upregulated in NAFLD, while S100A4 KO alleviated liver fibrosis and inflammation, in addition to inhibiting hepatocyte apoptosis.