• 제목/요약/키워드: materials simulation

검색결과 3,348건 처리시간 0.029초

A study on Applicability of VacCAD Simulator

  • Kim, Hyung-Taek;Kim, Kang-Won
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.200-206
    • /
    • 2019
  • In this study, we compared the VacCAD and VacSim(Multi), commercial vacuum simulators, to verify the advantages of VacCAD's efficiency. It was emphasized on immediacy and simplicity of simulation modelling, and characteristics of the pump combinations, pumping down curves, and vacuum materials. First, usability of simulation mechanism was estimated through the modeling schematics and obtained simulation results of each employed simulator were compared to evaluate the applicability in practice. Simulation reliability of each simulator was also probed by comparing the pumping characteristics of commercially available high vacuum systems. In addition, the degree of tolerances on VacCAD was also investigated through pumping down analysis considering outgassing effect due to chamber material variations. The higher effectiveness and expediency of VacCAD than VacSim(Multi) has been presented, and it was expected that the utilization of VacCAD in vacuum applications to be increased.

자성보상형 공기정압 저널베어링의 회전운동정밀도 시뮬레이션을 위한 실험적 고찰 (Experimental Investigation for Rotational Error Motion Simulation of Inherently Compensated Aerostatic Journal Bearing)

  • 심종엽;황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2015
  • It is an important thing for a designer to simulate and predict the performance of a spindle and a rotary table. In addition to the general performance such as static stiffness, the error motion performance information is beneficial to the designer in many cases. However for an aerostatic bearing the fluid film physical status should be calculated in order to simulate those performances and the calculation time is another obstacle for a simple performance simulation. In this paper the investigation on experiment and simulation is performed in order to find a more effective simulation method for the rotational error motion.

Material Discrimination Using X-Ray and Neutron

  • Jaehyun Lee;Jinhyung Park;Jae Yeon Park;Moonsik Chae;Jungho Mun;Jong Hyun Jung
    • Journal of Radiation Protection and Research
    • /
    • 제48권4호
    • /
    • pp.167-174
    • /
    • 2023
  • Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.

A Comparison of Simulation Characteristics of VacCAD and VacTran as Vacuum Simulator

  • Hyung-Taek Kim
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.217-223
    • /
    • 2023
  • In this study, we compared the VacCAD and VacTran, commercial vacuum simulators, to investigate the simulation applicability and efficiency as vacuum simulation software. It was verified on reliability and simplicity of simulation modelling, and characteristics of the pump combinations, pumping down curves, and employed vacuum materials. First, usability of simulation schematics was estimated through the modeling tools and the overall simulation characteristics of each simulator were compared to evaluate the applicability in practice. Simulation reliability of each simulator was also probed by comparing the pumping performance characteristics of commercial high vacuum system models. In addition, the degree of tolerances on both simulators was also evaluated through pumping down analysis considering outgassing effect due to chamber material variations. The higher effectiveness and expediency of VacCAD than VacTran has been presented, and it was also expected that the utilization of VacTan in vacuum applications to be increased due to the higher availability of modelling variations.

열처리 공정에서 가열 영역에 따른 평기어의 열변형 해석에 관한 연구 (A Study on the Thermal Deformation Simulation of Spur Gear According to the Heat Zones in Heat Treatment Process)

  • 김진록;윤성호;정윤철;서창희;권태하
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.60-66
    • /
    • 2020
  • In order to improve fatigue life of transmission gear carburizing is normally used. Carburizing is a very good process to achieve low cost and high performance. The machined gears are heated up to carburizing temperature and then cooled rapidly in an oil bath to produce high surface hardness. The gears may undergo excessive thermal distortion during heating and rapid cooling. In order to predict the distortion during heating and rapid cooling, a coupled thermo-mechanical simulation is needed. In the current research, the simulation of heating and cooling was performed. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation. In addition, induction heating and rapid cooling simulation is carried out to predict the thermal distortion. The amount of distortion is compared. It is shown that induction heating is very effective to reduce thermal distortion.

Lightscape에서의 사실적 재질 이미지 표현을 위한 Brightness 수치 개선에 관한 연구 (A Study on Improving Brightness Values for Real Representations of Material Images in Lightscape)

  • 장준호;박지애;최안섭
    • 조명전기설비학회논문지
    • /
    • 제21권2호
    • /
    • pp.1-8
    • /
    • 2007
  • 이 논문에서는 Lightscape를 사용할 때 보다 질적으로 나은 시뮬레이션 이미지를 산출하기 위해 각 재질에 따른 brightness 수치들을 변화시켜서 보다 사실적인 재질의 이미지를 표현하기 위한 최적의 brightness 수치를 산출하도록 하였다. 주간에 인공 광원의 광량과 강한 주광이 더해져서 광량이 초과되어 수치적으로 재질의 색이 변색되어 보이는 경우가 발생하기 때문이다. 그러므로 주간에는 낮은 수치의 brightness를 적용할 경우 재질의 느낌을 보다 사실과 근접하게 나타낼 수 있다는 결과를 추출하였다. 그리고 대부분의 재질들이 주간에는 낮은 brightness 수치를, 야간에 높은 brightness 수치를 입력하여야 원 재질의 RGB 데이터와 유사하여 가장 사실적인 시뮬레이션 이미지가 나온다는 사실을 알 수 있었다.

측정 불확도 표현 지침서(GUM)와 Monte-Carlo Simulation에 의한 불확도 전파 결과의 비교 연구 (A Study on Comparison between the Propagation of Uncertainty by GUM and Monte-Carlo Simulation)

  • 서정기;민형식;박민수;우진춘;김종상
    • 대한화학회지
    • /
    • 제47권1호
    • /
    • pp.31-37
    • /
    • 2003
  • 측정 및 화학분석에 많이 이용되는 한 점 교정식에 대하여 측정 불확도 표기 지침서(GUM)의 근사법과 Monte-Carlo Simulation에 의해 계산된 각각의 확장불확도를 비교하였다. 이 비교를 위하여 임의의 자료들을 여러 농도 수준에서 정규 분포 또는 t-분포로 가정하여 계산하였다. 나눗셈에 의한 한 점 교정식의 비선형성과 t-분포 형식을 함에 따른 입력량의 과도한 퍼짐으로 인하여, 경우에 따라서, GUM의 근사법으로 계산된 불확도가 Monte-Carlo Simulation에 의해 계산된 것보다 약 50% 이상의 오류가 있다는 것이 확인되었다. 그러나, 검출 하한을 계산하기 위하여 한 점 교정식을 이용하는 경우, 반응량의 표준불확도가 상대적으로 매우 크고 비선형성에 희한 계산 오류가 상대적으로 무시되므로 근사식에 따른 계산 오류가 발생하지 않았다.

Reference based simulation study of detector comparison for BNCT-SPECT imaging

  • Kim, Moo-Sub;Shin, Han-Back;Choi, Min-Geon;Monzen, Hajime;Shim, Jae Goo;Suh, Tae Suk;Yoon, Do-Kun
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.155-163
    • /
    • 2020
  • To investigate the optimal detector material for prompt gamma imaging during boron neutron capture therapy, in this study, we evaluated the characteristic regarding radiation reaction of available detector materials using a Monte Carlo simulation. Sixteen detector materials used for radiation detection were investigated to assess their advantages and drawbacks. The estimations used previous experimental data to build the simulation codes. The energy resolution and detection efficiency of each material was investigated, and prompt gamma images during BNCT simulation were acquired using only the detectors that showed good performance in our preliminary data. From the simulation, we could evaluate the majority of detector materials in BNCT and also could acquire a prompt gamma image using the six high ranked-detector materials and lutetium yttrium oxyorthosilicate. We provide a strategy to select an optimal detector material for the prompt gamma imaging during BNCT with three conclusions.

레이저 가공시 에너지 전달과 Plume 효과 (Laser- Plume Effects on Radiation Energy Transfer in Materials Processing)

  • Kang, Kae-Myung;Kim, Kwang-Ryul
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.27-35
    • /
    • 2002
  • In laser materials processing, localized heating, melting and evaporation caused by focused laser radiation forms a vapor on the material surface. The plume is generally an unstable entity, fluctuating according to its own dynamics. The beam is refracted and absorbed as it traverses the plume, thus modifying its power density on the surface of the condensed phases. This modifies material evaporation and optical properties of the plume. A laser-produced plasma plume simulation is completed using axisymmetric, high-temperature gas dynamic model including the laser radiation power absorption, refraction, and reflection. The physical properties and velocity profiles are verified using the published experimental and numerical results. The simulation results provide the effect of plasma plume fluctuations on the laser power density and quantitative beam radius changes on the material surface. It is proved that beam absorption, reflection and defocusing effects through the plume are essential to obtain appropriate mathematical simulation results. It is also found that absorption of the beam in the plume has much less direct effect on the beam power density at the material surface than defocusing does and helium gas is more efficient in reducing the beam refraction and absorption effect compared to argon gas for common laser materials processing.

열전달 해석을 이용한 VAR 공정 변수가 티타늄 합금 잉고트 응고 조직에 미치는 영향 연구 (The Effects of VAR Processing Parameters on solidification Microstructures in Ti Alloys by Computer Simulation)

  • 김종환;이재현;허성강;현용택;이용태
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.398-406
    • /
    • 2002
  • VAR process is required to control its various operating parameters. Heat transfer simulation has been accomplished to understand development of solidification micro and macro-structures during VAR process in Ti alloys. Optimum VAR process parameters could be also estimated in this study. It was found that macro-structures were closely related to the shape and depth of liquid pool, and solidification parameters, such as temperature gradient, heat flux, solid fraction. The cooling rates were higher at bottom, top, and center part respectively. As cooling rates increased, the $\alpha$ phase decreased in length, width and fraction. In order to evaluate which parameter affects the result of heat transfer calculation most sensitively, the sensitivities of input parameters to the simulation result were examined. The pool depth and cooling rate showed more sensitive to the temperature of the molten metal, heat transfer coefficient, and liquidus respectively. Also, these thermal properties became more sensitive at higher temperatures.