Browse > Article
http://dx.doi.org/10.1016/j.net.2019.07.002

Reference based simulation study of detector comparison for BNCT-SPECT imaging  

Kim, Moo-Sub (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Shin, Han-Back (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University, College of Medicine)
Choi, Min-Geon (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Monzen, Hajime (Department of Medical Physics, Graduate School of Medical Science, Kindai University)
Shim, Jae Goo (Department of Radiologic Technology Daegu Health College)
Suh, Tae Suk (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Yoon, Do-Kun (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
Publication Information
Nuclear Engineering and Technology / v.52, no.1, 2020 , pp. 155-163 More about this Journal
Abstract
To investigate the optimal detector material for prompt gamma imaging during boron neutron capture therapy, in this study, we evaluated the characteristic regarding radiation reaction of available detector materials using a Monte Carlo simulation. Sixteen detector materials used for radiation detection were investigated to assess their advantages and drawbacks. The estimations used previous experimental data to build the simulation codes. The energy resolution and detection efficiency of each material was investigated, and prompt gamma images during BNCT simulation were acquired using only the detectors that showed good performance in our preliminary data. From the simulation, we could evaluate the majority of detector materials in BNCT and also could acquire a prompt gamma image using the six high ranked-detector materials and lutetium yttrium oxyorthosilicate. We provide a strategy to select an optimal detector material for the prompt gamma imaging during BNCT with three conclusions.
Keywords
Boron neutron capture therapy (BNCT); Prompt gamma; Detector materials; Monte Carlo simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Nishimura, K. Hattori, S. Kabuki, H. Kubo, K. Miuchi, T. Nagayoshi, Y. Okada, R. Orito, H. Sekiya, A. Takada, Development of large area gamma-ray camera with GSO (Ce) scintillator arrays and PSPMTs, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 573 (2007) 115-118.   DOI
2 H. Rothfuss, L. Byars, M.E. Casey, M. Conti, L. Eriksson, C. Michel, Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 1087-1092.   DOI
3 R.F. Barth, J.A. Coderre, M.G.H. Vicente, T.E. Blue, Boron neutron capture therapy of cancer: current status and future prospects, Clin. Cancer Res. 11 (2005) 3987-4002.   DOI
4 R.F. Barth, A.H. Soloway, R.G. Fairchild, R.M. Brugger, Boron neutron capture therapy for cancer, Realities Prospects Canc. 70 (1992) 2995-3007.
5 L.J. Meng, Z. He, Exploring the limiting timing resolution for large volume CZT detectors with waveform analysis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 550 (2005) 435-445.   DOI
6 P.-A. Soderstrom, F. Recchia, J. Nyberg, A. Al-Adili, A. Atac, S. Aydin, D. Bazzacco, P. Bednarczyk, B. Birkenbach, D. Bortolato, Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 638 (2011) 96-109.   DOI
7 Tengblad, T. Nilsson, E. Nacher, H.T. Johansson, J. Briz, M. Carmona-Gallardo, C. Cruz, V. Gugliermina, A. Perea, J.S. del Rio, LaBr 3 (Ce): LaCl 3 (Ce) phoswich with pulse shape analysis for high energy gamma-ray and proton identification, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 704 (2013) 19-26.   DOI
8 J. Trummer, E. Auffray, P. Lecoq, A. Petrosyan, P. Sempere-Roldan, Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 551 (2005) 339-351.   DOI
9 J.A. Coderre, G.M. Morris, The radiation biology of boron neutron capture therapy, Radiat. Res. 151 (1999) 1-18.   DOI
10 M.F. Hawthorne, The role of chemistry in the development of boron neutron capture therapy of cancer, Angew. Chem. Int. Ed. 32 (1993) 950-984.   DOI
11 N.S. Hosmane, J.A. Maguire, Y. Zhu, M. Takagaki, Boron and gadolinium neutron capture therapy for cancer treatment, World Sci. (2012) 35-96.
12 T. Kurihara, M. Yoshioka, T. Sugano, K. Sennyu, A. Matsumura, H. Matsumoto, H. Kobayashi, F. Inoue, Y. Kiyanagi, H. Nakashima, Construction of a BNCT facility using an 8-MeV high power proton linac in Tokai, in: Conf. Proc, 2012, pp. 4083-4085.
13 E. Brunckhorst, Experimental Investigations of the Neutron Contamination in High-Energy Photon Fields at Medical Linear Accelerators, 2009.
14 M. Carpano, M. Perona, C. Rodriguez, S. Nievas, M. Olivera, G.A. Santa Cruz, D. Brandizzi, R. Cabrini, M. Pisarev, G.J. Juvenal, Experimental studies of boronophenylalanine (10 BPA) biodistribution for the individual application of boron neutron capture therapy (BNCT) for malignant melanoma treatment, Int. J. Radiat. Oncol. Biol. Phys. 93 (2015) 344-352.   DOI
15 V. Trivillin, M. Garabalino, L. Colombo, S. Gonzalez, R. Farias, A.M. Hughes, E. Pozzi, S. Bortolussi, S. Altieri, M. Itoiz, Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases, Appl. Radiat. Isot. 88 (2014) 94-98.   DOI
16 Y. Nakagawa, H. Hatanaka, Boron neutron capture therapy: clinical brain tumor studies, J. Neuro Oncol. 33 (1997) 105-115.   DOI
17 H. Joensuu, L. Kankaanranta, T. Seppala, I. Auterinen, M. Kallio, M. Kulvik, J. Laakso, J. Vahatalo, M. Kortesniemi, P. Kotiluoto, Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine, J. Neuro Oncol. 62 (2003) 123-134.   DOI
18 L. Kankaanranta, T. Seppala, H. Koivunoro, K. Saarilahti, T. Atula, J. Collan, E. Salli, M. Kortesniemi, J. Uusi-Simola, A. Makitie, Boron neutron capture therapy in the treatment of locally recurred head and neck cancer, Int. J. Radiat. Oncol. Biol. Phys. 69 (2007) 475-482.   DOI
19 Y. Nakagawa, K. Pooh, T. Kobayashi, T. Kageji, S. Uyama, A. Matsumura, H. Kumada, Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams, J. Neuro Oncol. 62 (2003) 87-99.   DOI
20 C.P. Raaijmakers, M.W. Konijnenberg, L. Dewit, D. Haritz, R. Huiskamp, K. Philipp, A. Siefert, F. Stecher-Rasmussen, B.J. Mijnheer, Monitoring of blood-10B concentration for boron neutron capture therapy using prompt gammaray analysis, Acta Oncol. 34 (1995) 517-523.   DOI
21 S. Baechler, P. Kudejova, J. Jolie, J.-L. Schenker, N. Stritt, Prompt gamma-ray activation analysis for determination of boron in aqueous solutions, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 488 (2002) 410-418.   DOI
22 T. Matsumoto, M. Aoki, O. Aizawa, Phantom experiment and calculation for in vivo 10boron analysis by prompt gamma ray spectroscopy, Phys. Med. Biol. 36 (1991) 329.   DOI
23 P.M. af Rosenschold, D. Minarik, C. Ostlund, M. Ljungberg, C. Ceberg, Prompt gamma tomography during BNCT-a feasibility study, J. Instrum. 1 (2006) P05003.   DOI
24 F. Becvar, J. Cizek, L. Lestak, I. Novotny, I. Prochazka, F. Sebesta, A high-resolution BaF 2 positron-lifetime spectrometer and experience with its long-term exploitation, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 443 (2000) 557-577.   DOI
25 S. Watanabe, T. Tanaka, K. Oonuki, T. Mitani, S.i. Takeda, T. Kishishita, K. Nakazawa, T. Takahashi, Y. Kuroda, M. Onishi, Development of CdTe pixel detectors for Compton cameras, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 567 (2006) 150-153.   DOI
26 H. Yang, N. Menaa, F. Bronson, M. Kastner, R. Venkataraman, W. Mueller, Evaluation of a LiI (Eu) neutron detector with coincident double photodiode readout, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652 (2011) 364-369.   DOI
27 M. Kapusta, M. Balcerzyk, M. Moszynski, J. Pawelke, A high-energy resolution observed from a YAP: Ce scintillator, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 421 (1999) 610-613.   DOI
28 Bartoli, N. Belcari, A. Del Guerra, S. Fabbri, Simultaneous PET/SPECT imaging with the small animal scanner YAP-(S) PET, in: Nuclear Science Symposium Conference Record, 2007. NSS'07. IEEE, IEEE, 2007, pp. 3408-3413.
29 Z. He, R.D. Vigil, Investigation of pixellated $HgI2{\gamma}$-ray spectrometers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 492 (2002) 387-401.   DOI
30 K.J. Hong, Y. Choi, J.H. Jung, J. Kang, W. Hu, H.K. Lim, Y. Huh, S. Kim, J.W. Jung, K.B. Kim, A prototype MR insertable brain PET using tileable GAPD arrays, Med. Phys. 40 (2013).
31 S.-m. Park, A. Aalipour, O. Vermesh, J.H. Yu, S.S. Gambhir, Towards clinically translatable in vivo nanodiagnostics, Nat. Rev. Mater. 2 (2017) 17014.   DOI
32 H. Yu, X. Tang, D. Shu, Y. Liu, C. Geng, C. Gong, S. Hang, D. Chen, Influence of neutron sources and 10B concentration on boron neutron capture therapy for shallow and deeper non-small cell lung cancer, Health Phys. 112 (2017) 258-265.   DOI
33 Murata, T. Mukai, S. Nakamura, H. Miyamaru, I. Kato, Development of a thick CdTe detector for BNCT-SPECT, Appl. Radiat. Isot. 69 (2011) 1706-1709.   DOI
34 M. Manabe, S. Nakamura, I. Murata, Study on measuring device arrangement of array-type CdTe Detector for BNCT-SPECT, Rep. Practical Oncol. Radiother. 21 (2016) 102-107.   DOI
35 Murata, S. Nakamura, M. Manabe, H. Miyamaru, I. Kato, Characterization measurement of a thick CdTe detector for BNCT-SPECT-Detection efficiency and energy resolution, Appl. Radiat. Isot. 88 (2014) 129-133.   DOI
36 J.-Y. Jung, B. Lu, D.-K. Yoon, K.J. Hong, H. Jang, C. Liu, T.S. Suh, Therapy region monitoring based on PET using 478 keV single prompt gamma ray during BNCT: a Monte Carlo simulation study, Phys. Med. 32 (2016) 562-567.   DOI
37 J. Dey, M.A. King, Theoretical and numerical study of MLEM and OSEM reconstruction algorithms for motion correction in emission tomography, IEEE Trans. Nucl. Sci. 56 (2009) 2739-2749.   DOI
38 Gaitanis, G. Kontaxakis, G. Spyrou, G. Panayiotakis, G. Tzanakos, PET image reconstruction: a stopping rule for the MLEM algorithm based on properties of the updating coefficients, Comput. Med. Imag. Graph. 34 (2010) 131-141.   DOI
39 D.-K. Yoon, J.-Y. Jung, T.S. Suh, Application of proton boron fusion reaction to radiation therapy: a Monte Carlo simulation study, Appl. Phys. Lett. 105 (2014) 223507.   DOI
40 T. Yokei, H. Shinohara, H. Onishi, Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: a simulation study, Ann. Nucl. Med. 16 (2002) 11-18.   DOI
41 D.-K. Yoon, J.-Y. Jung, S.-M. Han, T.S. Suh, Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study, J. Radioanal. Nucl. Chem. 303 (2015) 859-866.   DOI
42 A.R. Genady, J.A. Ioppolo, M.M. Azaam, E. Mohamed, New functionalized mercaptoundecahydrododecaborate derivatives for potential application in boron neutron capture therapy: synthesis, characterization and dynamic visualization in cells, Eur. J. Med. Chem. 93 (2015) 574-583.   DOI
43 R.G. Fairchild, J. Kalef-Ezra, S. Saraf, S. Fiarman, E. Ramsey, L. Wielopolski, B. Laster, F. Wheeler, Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR), in: Neutron Beam Design, Development, and Performance for Neutron Capture Therapy, Springer, 1990, pp. 185-199.
44 Y. Eisen, A. Shor, C. Gilath, M. Tsabarim, P. Chouraqui, C. Hellman, E. Lubin, A gamma camera based on CdTe detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 474-478.   DOI
45 D.K. Yoon, J.Y. Jung, K. Jo Hong, K. Sil Lee, T. Suk Suh, GPU-based prompt gamma ray imaging from boron neutron capture therapy, Med. Phys. 42 (2015) 165-169.
46 H.-B. Shin, D.-K. Yoon, J.-Y. Jung, M.-S. Kim, T.S. Suh, Prompt gamma ray imaging for verification of proton boron fusion therapy: a Monte Carlo study, Phys. Med. 32 (2016) 1271-1275.   DOI
47 A. Valda, D. Minsky, A. Kreiner, A. Burlon, H. Somacal, Development of a tomographic system for online dose measurements in BNCT (Boron Neutron Capture Therapy), Braz. J. Phys. 35 (2005) 785-788.   DOI
48 D.M. Minsky, A. Valda, A. Kreiner, S. Green, C. Wojnecki, Z. Ghani, First tomographic image of neutron capture rate in a BNCT facility, Appl. Radiat. Isot. 69 (2011) 1858-1861.   DOI
49 G. Hu, S. Wang, Y. Li, L. Xu, P. Li, The influence of temperature gradient on energy resolution of Bi 4 Ge 3 O 12 (BGO) crystal, Ceram. Int. 30 (2004) 1665-1668.   DOI
50 G. Hull, B. Genolini, M. Josselin, I. Matea, J. Peyre, J. Pouthas, T. Zerguerras, Energy resolution of LaBr 3: Ce in a phoswich configuration with CsI: Na and NaI: Tl scintillator crystals, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 695 (2012) 350-353.   DOI
51 M. McClish, P. Dokhale, J. Christian, C. Stapels, E. Johnson, F. Augustine, K.S. Shah, Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652 (2011) 264-267.   DOI