• Title/Summary/Keyword: materials science

Search Result 32,826, Processing Time 0.065 seconds

Synthesis and Characteristic of Novel Soluble Triazoleimide Oligomers with Terminated Arylacetylene

  • Zhou, Xiao'an;Du, Lei;Wan, Liqiang;Wang, Xiaofei;E, Yanpeng;Huang, Farong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2603-2606
    • /
    • 2010
  • Novel soluble triazoleimide oligomers terminated with arylacetylene terminated were synthesized by the Cu(I)-catalysed 1,3-dipolar cycloaddition polymerization of diazides and imide-containing dialkyne. Several molecular weight triazoleimide oligomers were prepared from diazide and dialkyne monomers with different stoichiometric combinations. The curing behaviors of the oligomers were tested by differential scanning calorimetry (DSC). The thermal properties of the cured products were evaluated by DSC and thermogravimetric analysis (TGA). These cured oligomers showed the glass transition temperature of about $225-235^{\circ}C$ and the decomposition temperature (at 5% weight loss) of about $385-393^{\circ}C$ in nitrogen.

Size control of Co-doped ZnO rods by changing the solvent

  • Zhao, Jing;Yan, Xiaoqin;Lei, Yang;Zhao, Yanguang;Huang, Yunhua;Zhang, Yue
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • In this work, the Co-doped ZnO rods were prepared by the hydrothermal method. The size of these rods can be changed from micro-size to nano-size by using different solutions during the preparation. The results of transmission electron microscopy (TEM) and selected area electron diffraction (SAED) showed that the as-prepared nano-sized Co-doped rods have single-crystal structure. The polarized Raman experiments were presented on an individual micro-sized Co-doped ZnO rod in the $X(YY)\vec{X}$, $X(ZY)\vec{X}$ and $X(ZZ)\vec{X}$ configurations, the results of polarized Raman indicated that these rods are crystallized and their growth direction is parallel to c-axis.

Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite

  • He, Wentao;Yao, Yong;He, Min;Kai, Zhang;Long, Lijuan;Zhang, Minmin;Qin, Shuhao;Yu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.112-116
    • /
    • 2013
  • Surface modification of montmorillonite (MMT) with 3-glycidoxypropyl trimethoxysilane (3GTO) in mild methanol/water mixture has been investigated in detail. The influence of reaction conditions (including silane concentration in feed, reaction time and reaction temperature) on the grafting amount and yield of silane, and further on the grafting pattern of silanes was studied by thermogravimetric analysis, elemental analysis, X-ray diffraction (XRD) and BET. Higher silane concentration, longer reaction time and higher reaction temperature are all benefit to higher grafting amount. When the grafting reaction was performed with 3 mmol/g silane concentration, at $90^{\circ}C$ for 24 h, the grafted amount and yield of silane reached 1.4443 mmol/g and 30%, respectively. Based on the XRD and BET data analysis, a speculation that the grafting pattern of silanes was concentration dependence was proposed.

Synthesis and characterization of NiFe2O4 nanoparticle electrocatalyst for urea and water oxidation (요소 산화반응을 위한 NiFe2O4 나노파티클 촉매 합성 및 특성 분석 )

  • Ki-Yong Yoon;Kyung-Bok Lee;Dohyung Kim;Hee Yoon Roh;Sung Mook Choi;Ji-hoon Lee;Jaehoon Jeong;Juchan Yang
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2023
  • Urea oxidation reaction (UOR) via electrochemical oxidation process can replace oxygen evolution reaction (OER) for green hydrogen production since UOR has lower thermodynamic potential (0.37 VRHE) than that of OER (1.23 VRHE). However, in the case of UOR, 6 electrons are required for the entire UOR. For this reason, the reaction rate is slower than OER, which requires 4 electrons. In addition, it is an important challenge to develop catalysts in which both oxidation reactions (UOR and OER) are active since the active sites of OER and UOR are opposite to each other. We prove that among the NiFe2O4 nanoparticles synthesized by the hydrothermal method at various synthesis temperatures, NiFe2O4 nanoparticle with properly controlled particle size and crystallinity can actively operate OER and UOR at the same time.

DUAL SPEED LASER RE-MELTING FOR HIGH DENSIFICATION IN H13 TOOL STEEL METAL 3D PRINTING

  • IM DOO JUNG;JUNGHO CHOE;JAECHEOL YUN;SANGSUN YANG;DONG-YEOL YANG;YONG-JIN KIM;JI-HUN YU
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.571-578
    • /
    • 2019
  • The densification behavior of H13 tool steel powder by dual speed laser scanning strategy have been characterized for selective laser melting process, one of powder bed fusion based metal 3d printing. Under limited given laser power, the laser re-melting increases the relative density and hardness of H13 tool steel with closing pores. The single melt-pool analysis shows that the pores are located on top area of melt pool when the scanning speed is over 400 mm/s while the low scanning speed of 200 mm/s generates pores beneath the melt pool in the form of keyhole mode with the high energy input from the laser. With the second laser scanning, the pores on top area of melt pools are efficiently closed with proper dual combination of scan speed. However pores located beneath the melt pools could not be removed by second laser scanning. When each layer of 3d printing are re-melted, the relative density and hardness are improved for most dual combination of scanning. Among the scan speed combination, the 600 mm/s by 400 mm/s leads to the highest relative density, 99.94 % with hardness of 53.5 HRC. This densification characterization with H13 tool steel laser re-melting can be efficiently applied for tool steel component manufacturing via metal 3d printing.