• Title/Summary/Keyword: material structure

Search Result 9,386, Processing Time 0.04 seconds

Development of a Material Mixing Method for Topology Optimization of Multiple Material Structures (다중재료 구조물의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Lee, Soo-Kyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.726-731
    • /
    • 2004
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

Development of a Material Mixing Method using ESO (진화적 구조 최적화를 이용한 재료 혼합법의 개발)

  • 한석영;이수경;신민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.259-264
    • /
    • 2003
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

  • PDF

Topology optimization of the structure using multimaterial inclusions

  • Kutylowski, Ryszard
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.285-306
    • /
    • 2009
  • In the literature the problem of the topology optimization of the structure is usually solved for one, clearly described from the mechanical point of view material. Generally the topology optimization answers the question of the distribution of this mentioned above material within the design domain. Finally, material-voids distribution it is obtained. In this paper, for the structure mainly strengthened or sometimes weakened by the inclusions, the variation approach of the topology optimization problem is formulated. This multi material approach may be useful for the design process of various mechanical or civil engineering structures which need to be more "refined" and more "optimal" than they can be using previous topology optimization procedures of optimization one material structures.

경면 연삭기 베드를 위한 레진 콘크리트에 관한 연구

  • 김현석;김기수;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.108-113
    • /
    • 1993
  • The material for the machine tool structure should have high static stiffiness and damping in its property to improve both the static and dynamic performances. The static stiffness of a machine tool can be inceased by using either higher modulus material in the structure of a machine tool. However, the machine tool structrue with high stiffness but low damping is vulnerable to vibration at the resonance frequencies of the structure . For the high precision and highsped machine tool structure, therefore, the high damping capacity is most important in order to suppress vibration. The damping of a machine tool can not be increased by increasing the static stiffness. The best way to increase the damping capacity of the machine tool structure is to use a composite material which is composed of on material with high stiffness with low damping and another material with low stiffness with high damping. Therefore, in this paper, the bed of the ultra high precision grinding machine for mirror surface machining of brittle materials such as ceramics and composite materials was designed and manufactured with the epoxy concrete material. The epoxy concrete material was prepared by mixing epoxy resin with different size sands and gravels. The modulus, compressive strength, coefficient of thermal expansion, specific heat, and damping factor were measured by varying the compaction ratio, sizes and contents of the ingredients to assess the effect of the processing parameters on the mechanical properties of the material. Based of the measured properties, the prototype epoxy resin concrete bed for the mirror surface CNC grinding machine was designed and manufactured.

The changing characteristics of Material and Structure of Rural Housing in the aspect of Period and Region (지역별·시기별 농촌주택의 재료 및 구법 특징 변화 연구)

  • Bae, Woong-Kyoo;Joo, Dae-Khan;Jeong, Dong-Seop;Yun, Yong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6504-6513
    • /
    • 2013
  • The result can be summarized as follows. First, the following periodically changing characteristics were examined:roof form(gambrel/hipped-flat-gable), structure of roof and wall(wood-framed-cement masonry-RC-Light iron framed), roof material(thatched-tiled-slate-cement/steel sheet-asphalt/sandwich panel/mortar water-proofing), wall material(clay plaster/lime plastered-dressing tile/bricks-painting on the cement plastering-native stone dressing/siding/tile), fence material(masonry of stone and cement bricks), and courtyard materials(clay and concrete). Secondly, the regionally changing characteristics of those elements, rural housing structure, roof form, roof structure material, wall finishing material, fence and courtyard material in the outer space, differed according to the location of rural housing, i.e.north, middle, south region. The changing characteristics of both the roof structure and wall structure are similar to those of the three regions.

A Study on the Derivation of Bracket Structure Terminology in Yingzaofashi in the Era of Song Dynasty (송대(宋代) ${\ll}$영조법식(營造法式)${\gg}$ 대목작(大木作) 포작(鋪作) 관련용어의 파생에 관한 연구)

  • Kim, Jae-Ung
    • Journal of architectural history
    • /
    • v.20 no.2
    • /
    • pp.55-70
    • /
    • 2011
  • This paper aimed at analyzing of structural carpentry terminology for bracket structure in Yingzaofashi ${\ll}$營造法式${\gg}$in the era of Song Dynasty and illuminating coinage characteristics and method of Structural Carpentry Terminology for bracket Structure through graphonomy research and system and structure of these terms. The results are as follow. The structural carpentry terminologies for structure were identified to be approximately 23 words, and terminology of bracket structure鋪作 is largely categorized into 3 categories of Type鋪作次序, Structure, Place. On the other hand, the structural carpentry terminologies for parts largely categorized into 2 categories of Bracket structure鋪作, Others. Bracket structure terminologies for parts were derived from the core of Dou枓, Gong栱, Ang昂, Fang方. The phenomena of derivation in structural carpentry terminology for bracket structure can be explained by the difference in the shape of subsidiary material and the location for usage of the subsidiary material and part of the subsidiary material and their functions.

Tests of Fire and Flame Retardant Performance for Membrane Materials (막재료의 난연 및 방염성능 실험에 대한 연구)

  • Kim, Gee-Cheol;Choi, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2016
  • The Membrane structure has a number of problems in the application of a fireproof code based on general buildings codes. Thus, the fireproof code of membrane structure is necessary to activate the construction of the membrane structure. Because it requires a systematic classification of fire retardant and flame proof performance of membrane material. Fire retardant and flame proof tests are conducted on membrane materials mostly used in current construction to propose the fire and flame retardant performance criteria of membrane materials. Fire and flame retardant tests results, PTFE membrane material with the glass fiber fabric have a limit-combustible performance. PVDF membrane material with the polyester fabric does not ensure the fire retardant performance, but this membrane material has the flame retardant performance of a thick fabric. Also, ETFE does not ensure the fire retardant performance, but this membrane material has the flame retardant of a thin fabric.

Analysis of Soil-Structure Interaction Considering Complicated Soil Profile (복잡한 지층 형상을 고려한 지반-구조물 상호작용 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.87-93
    • /
    • 2006
  • When a structure is constructed at the site composed of soil, the behavior of a structure is much affected by the characteristics of soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a structure at the site composed of soil. Precise analysis of soil-structure interaction requires a proper description of soil profile. However, most of approaches are nearly unpractical for soil exhibiting material discontinuity and complex geometry since those cannot consider precisely complicated soil profiles. To overcome these difficulties, an improved integration method is adopted and enables to integrate easily over an element with material discontinuity. As a result the mesh can be generated rapidly and highly structured, leading to regular and precise stiffness matrix. The influence of soil profile on the response is examined by the presented method. It is seen that the presented method can be easily used on soil-structure interaction problems with complicated soil profile and produce reliable results regardless of material discontinuities.

Application of Satisfaction Curve to Concrete Material

  • Kim, Jang-Ho-Jay;Phan, Hung-Duc;Jeong, Ha-Sun;Kim, Byung-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.821-824
    • /
    • 2008
  • This paper presents a systematic approach for estimating material performance of concrete mixture design based on satisfaction curves developed from statistical evaluation of existing or newly obtained material property related data. In performance based material design (PBMD) method, concrete material used for construction of a structure is designed considering a structure's specified performance requirements based on its usage and characteristics such as environmental conditions, structure types, expected design life, etc.Satisfaction curves express the probabilities that one component of substrates (i.e., aggregate size, cement content, etc) of concrete mixture will sustain different criterion value for a given concrete mixture design. This study presents a statistical analysis method for setting up concrete material parameter versus concrete criterion relationships in the form of satisfaction curves and for estimating confidence bounds on these satisfaction curves. This paper also presents an analysis method to combine multiple satisfaction curves to form one unique satisfaction curve that can relate the performance of concrete to a single evaluating value. Based on several evaluated mixture design examples for various material properties, the validity of the proposed method is discussed in detail.

  • PDF

Mechanism of Piezoelectricity for Langasite Based on the Framework Crystal Structure

  • Ohsato, Hitoshi;Iwataki, Tsuyoshi;Morikoshi, Hiroki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2012
  • Piezoelectric langasite crystals have superior properties such as high temperature performance and high quality Q and can be applied in combustion pressure sensors and surface acoustic wave (SAW) filters. Crystal growth, crystal structure and properties of langasite group are reviewed, and the mechanism of piezoelectricity of langasite is presented based on the crystal structure and deformation under high pressure. Finally, for the discovery of new piezoelectric materials, this paper presents the role of the framework, and recommends the search of framework crystal structure, because the characteristic of the mechanism exists on the framework of the crystal structure.