• Title/Summary/Keyword: material stability

Search Result 3,304, Processing Time 0.029 seconds

Stability for Rose Petals Pigment as a Food Material (식품 소재로서 장미꽃잎 색소의 안정성)

  • Yang Mi-Ok;Cho Eun-Ja
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.4
    • /
    • pp.468-473
    • /
    • 2006
  • This study was conducted to develop pigment of flowers as a food material and the red rose(Rosa hybrida L.) was used for this study. To check the possibility of using the rose pigment as a food additive we have extracted the pigment from rose and examined all the factors (pH, temperature, free sugars, organic acids, metal ions) for stability. The results obtained are as follows: In examining the stability of the pigment, the residue of the pigment noticeably decreased with the increase of the pH and the temperature, and among free sugars (fructose, glucose, sucrose) the addition of fructose made the residue the lowest. With the addition of organic acids the samples exhibited the hyperchromic effect throughout the period of the storage. The pigment residue decreased when the amount of the metal ions increased and especially the Cu$^{2+}$ ion was most destructive.

  • PDF

A Study on the Thermal Stability of Carpet in Air Condition (에어컨디션에서 카펫의 열안정성에 관한 연구)

  • Park, Keun-Ho;Lee, Soo;Song, Ju-Yeong;Lee, Ki-Chul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • This paper describes the experiments for investigating the effects of thermal stability of several commercial carpet mate materials. The melting point and thermal decomposition temperature was measured by means of a differential scanning calorimeter(DSC) in air condition. The DSC data and burning test results of nylon bulked continuous filament(N-BCF) yarn 100%, nylon(NY), polypropylene(PP), and a new material named polytrimethyleneterephthalate(PTT) were analysed to obtain the effect on their thermal stability. Conclusively, we observed that PTT and PP were approximately $380^{\circ}C$ and $240^{\circ}C$ to start the thermal decomposition, respectively. In other words, PTT is thermally the most stable material for carpet manufacturing.

The effect of additive on $SnO_2$ gas sensor for improving stability ($SnO_2$계 가스 센서의 안정성 향상을 위한 산화물의 첨가 효과)

  • Park, Kwang-Mook;Min, Bong-Ki;Choi, Soon-Don;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.865-868
    • /
    • 2002
  • $SnO_2$ powders were prepare by precipitating $Sn(OH)_4$ from an aqueous solution of $SnCl_4{\cdot}5H_2O$, pH 9.5. The effects of stability and sensitivity of $SnO_2$ thick film sensors added with various amounts, $SiO_2$, $Al_2O_3$, $ZrO_2$, $TiO_2$ have been investigated. It is shown that the 3wt% $Al_2O_3$ or $SiO_2$ can improve the stability of $SnO_2$ gas sensor at an operating temperature of $350^{\circ}C$.

  • PDF

Investigation on the Stability Enhancement of Oxide Thin Film Transistor (산화물반도체 트랜지스터 안정성 향상 연구)

  • Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.351-354
    • /
    • 2013
  • Thin-film transistors(TFTs) with silicon-zinc-tin-oxide(SiZnSnO, SZTO) channel layer are fabricated by rf sputtering method. Electrical properties were changed by different annealing treatment of dry annealing and wet annealing. This procedure improves electrical property especially, stability of oxide TFT. Improved electrical properties are ascribed to desorption of the negatively charged oxygen species from the surfaces by annealing treatment. The threshold voltage ($V_{th}$) shifted toward positive as increasing Si contents in SZTO system. Because the Si has a lower standard electrode potential (SEP) than that that of Sn, Zn, resulting in the degeneration of the oxygen vacancy ($V_O$). As a result, the Si acts as carrier suppressor and oxygen binder in the SZTO as well as a $V_{th}$ controller, resulting in the enhancement of stability of TFTs.

Synthesis and Characterization of Quaterrylene Bisimide as NIR Colorant (NIR Colorant용 Quaterrylene Bisimide의 합성 및 특성 연구)

  • Park, Keun-Soo;Jeong, Yeon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.398-403
    • /
    • 2011
  • Recently, Near-infrared (NIR)colorant is intriguing and attractive but full of challenges. Although some cyanine colorant have been commercialized, near-infrared colorant with intensive NIR absorption, good chemical and photo-stability, and high solubility still remain as target compound. Certain polycyclic aromatic compounds such as quaterrylene represent a key class of NIR colorant and also give rise to outstanding physical and chemical properties after appropriate chemical modification. In this study, We have tried to introduceimide functional group to quaterrylene in order to give chemical and thermal stability. Finally, N,N'-bis (2,6-diisopropylphenyl)-quarterrylene-3,4:13,14-tetracarboximide was synthesized and evaluated its properties using $^1H$ NMR, Maldi-tof, TGA, and UV/VIS/NIR spectroscopy as NIR colorant. The quaterrylene bisimide compound exhibit a excellent thermal stability and chemical stability.

Thermal Stability of Ta-Mo Alloy Film on Silicon Dioxide (실리콘 산화막에 대한 Ta-Mo 합금 게이트의 열적 안정성)

  • 노영진;이충근;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.361-366
    • /
    • 2004
  • The interface stability of Ta-Mo alloy film on SiO$_2$ was investigated. Ta-Mo alloy films were formed by co-sputtering method, and the alloy composition was varied by controlling Ta and Mo sputtering power, When the atomic composition of Ta was about 91%, the measured work function was 4.24 eV that is suitable for NMOS gate. To identify interface stability between Ta-Mo alloy film and SiO$_2$, C-V and XRD measurements were performed on the samples annealed with rapid thermal processor between $600^{\circ}C$ and 90$0^{\circ}C$. Even after 90$0^{\circ}C$ rapid thermal annealing, excellent interface stability and electrical properties were observed. Also, thermodynamic analysis was studied to compare with experimental results.

The Thermal Stability of Teflon AF/FEP Double Layer Film Electret (Teflon AF/FEP 이중 필름 일렉트렛트의 열적 안정성)

  • 김병수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.693-699
    • /
    • 2003
  • To improve thermal stability of Teflon FEP which is the most widely used materials for electret application, Teflon AF film of 1 $\mu\textrm{m}$ thick was spin coated on FEP film and the charge storage properties were investigated. The surface potential depend on aging temperature. Thermal Stimulated Current(TSC), Atomic Force Microscopy(AFM), and Fourier Transform-Infrared Spectroscope(FT-lR) measurements were carried out. It is shown that the AF/FEP dual film have more higher electrical property and thermal stability than that FEP film have caused by charge stored at interface of AF and FEP.

The effect of non-homogeneity on the stability of laminated orthotropic conical shells subjected to hydrostatic pressure

  • Zerin, Zihni
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.89-103
    • /
    • 2012
  • In this study, the stability of laminated homogeneous and non-homogeneous orthotropic truncated conical shells with freely supported edges under a uniform hydrostatic pressure is investigated. It is assumed that the composite material is orthotropic and the material properties depend only on the thickness coordinate. The basic relations, the modified Donnell type stability and compatibility equations have been obtained for laminated non-homogeneous orthotropic truncated conical shells. Applying Galerkin method to the foregoing equations, the expression for the critical hydrostatic pressure is obtained. The appropriate formulas for the single-layer and laminated, cylindrical and complete conical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, effects of non-homogeneity, number and ordering of layers and variations of shell characteristics on the critical hydrostatic pressure are investigated.

Temperature stability for length extensional vibration of $Pb(Zr_{0.56}Ti_{0.44}O_{3}+x[wt%]Cr_{2}O_{3})$ceramics ($Pb(Zr_{0.56}Ti_{0.44}O_{3}+x[wt%]Cr_{2}O_{3})$세라믹스의 길이진동에 대한 온도안정성)

  • 현덕수;한성훈;이개명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.881-884
    • /
    • 2000
  • Recently mobile communication fields need piezoelectric ceramic resonators and filters as possible as small. The length-extensional vibration mode of a rectangular piezoelectric cesamic plate has the advantage of the small size, but the mode has not been studied sufficiently because it was not used extensively until now. In this paper, PZT + x[wt%l $Cr_20_3$ ceramics with rhombohedra1 phase were fabricated. And temperature stability for the mode of the ceramic specimen was investigated. Contrary to our expectations, addition of the stabilizer, $Cr_20_3$ did not promote the temperature stability for the mode in the PZT ceramic specimen with rhombohedra1 phase.

  • PDF

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.