• 제목/요약/키워드: material stability

검색결과 3,317건 처리시간 0.03초

알카자이트 수복재의 색안정성 : 실험실적 연구 (Color Stability of Alkasite Restorative Material: in vitro Studies)

  • 안지혜;이상호;이난영;신혜원;지명관
    • 대한소아치과학회지
    • /
    • 제49권4호
    • /
    • pp.428-441
    • /
    • 2022
  • 이 연구의 목적은 알카자이트 수복재와 소아치과 영역에서 널리 사용되고 있는 수복재들의 색 안정성을 비교하고, 다양한 음료에서의 색상 변화를 비교하는 것이다. 글라스아이오노머, 레진강화형 글라스아이오노머, 알카자이트 수복재, 복합레진의 시편을 준비하였고, 열순환 후 색 안정성을 측정하였다. 침전 전과 7일, 14일, 21일, 28일 후 CIE L*a*b*값의 색상 변화를 분석하기 위해 각 수복재료의 시편을 5개의 군으로 나누어 각각 PBS, 커피, 녹차, 콜라, 오렌지주스 용액에 침전시켰다. 열순환 후 복합레진에서 가장 높은 색 안정성을 보였고, 알카자이트 수복재, 글라스아이오노머, 레진강화형 글라스아이오노머 순으로 높은 안정성을 보였다. 7일간 다양한 용액에 침전시킨 결과 모든 시편에서 색상 변화가 나타났으며, 알카자이트 수복재는 글라스아이오노머 계열보다 낮은 색상 변화를 보였고, 복합레진보다는 높은 색상 변화를 나타냈다. 알카자이트 수복재는 커피에서 가장 많은 색상 변화가 나타났으며 그 다음은 녹차, 오렌지주스 순이었으나, 콜라와 PBS 용액에서는 침전 28일 이후에도 색상 변화를 거의 보이지 않았다.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성 (Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars)

  • 정광기;이상우;권성욱;송명석
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

Material Integrity Assessment for a Ni Electrodeposit inside a Tube

  • Kim, Dong-Jin;Kim, Myong Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.233-238
    • /
    • 2007
  • Due to the occasional occurrence of a localizedcorrosion such as a SCC and pitting in steam generator tubing(Alloy 600), leading to a significant economical loss, an effective repair technology is needed. For a successful electrodeposition inside a tube, many processes should be developed. Among these processes, an anode to be installed inside a tube, a degreasing condition to remove any dirt and grease, an activation condition for a surface oxide elimination, a strike layer forming condition which needs to be adhered tightly between an electroforming layer and a parent tube and a condition for an electroforming layer should be established. Through a combination of these various process condition parameters, the desired material properties can be acquired. Among these process parameters, various material properties including a mechanical property and its variation along with the height of the electrodeposit inside a tube as well as its thermal stability and SCC resistance should be assessed for an application in a plant. This work deals with the material properties of the Ni electrodeposits formed inside a tube by using the anode developed in this study such as the current efficiency, hardness, tensile property, thermal stability and SCC behavior of the electrodeposit in a 40wt% NaOH solution at $315^{\circ}C$. It was found that a variation of the material properties within the entire length of the electrodeposit was quite acceptable and the Ni electrodeposit showed an excellent SCC resistance.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

인상채득 후 시간경과에 따른 고무인상재의 체적변화 (AN EVALUATION OF THE TIME-DEPENDENT DIMENSIONAL STABILITY OF ELASTOMERIC IMPRESSION MATERIALS)

  • 이홍석;조석규;윤태호;박주미;송광엽
    • 대한치과보철학회지
    • /
    • 제44권4호
    • /
    • pp.363-373
    • /
    • 2006
  • Statement of Problem : The accuracy and dimensional stability of elastomeric impression materials have been the subject of numerous investigation. Few studies have addressed the effect of changes in time on the dimensional stability of impression materials. Purpose: The purpose of this investigation was to evaluate the effects of elastomeric impression materials and storage time on dimensional stability. Materials and methods: A total of 75 impressions were made of epoxy resin dies mimicked prepared 3-unit fixed partial denture. The dies had 1 buccolingual, 1 mesiodistal and 1 occlusogingival lines and interpreped dot. Impression materials investigated included two polyether impression materials and three polyvinylsiloxane impression material. 15 specimens were made of each impression material and poured by type IV stone over times (30 minutes, 24 hours, 72 hours) after mixing; the same examiner measured each specimen 3 times at a magnification of 3.5$\times$. All statistical tests were performed with the level of significance set at .05. Results : The results indicated that significant difference at any measuring point of stone dies of the polyether impression materials and when measurements at 30 minutes, 24 hours, and 72 hours were compared ; the length of measuring point increased significantly as time passed by. However this result is not significant clinically. Analysis also showed significant differences at any measuring point when polyvinylsiloxane and polyether impression materials were compared and significant differences clinically. Conclusion: Under the conditions of this study, the shrinkage rate of the polyvinylsiloxane and polyether impression materials significantly increased as time passed by. The polyether impression materials showed higher shrinkage significantly, while the shrinkage rate of all five materials showed a significant time-dependent increase.

SiO2/TiO2 sol-gel법을 이용한 p-아라미드 섬유의 내광성 증진 (Improvement of Photo-stability for p-Aramid Fibers by SiO2/TiO2 Sol-Gel Method)

  • 이영일;정민혁;이문철
    • 한국염색가공학회지
    • /
    • 제25권3호
    • /
    • pp.172-180
    • /
    • 2013
  • Aramid fibers are being used increasingly in a wide range of application due to low density, high specific strength, high modulus, and high thermal resistance. But owing to its special physical and chemical structures, it is sensitive to absorb the ultraviolet light which will degrade the fiber's useful mechanical properties and structure. In this paper, the sol-gel technique was used to improve the photo-stability of p-aramid fibers. $TiO_2$, modified $SiO_2$/$TiO_2$ sol were used as coating solutions. The influence of the such coatings on the photo-stability of p-aramid fiber was investigated by an accelerated photo-ageing method using xenon lamp. The photo-stability of p-aramid fiber showed obvious improvement after the modified silica binding coating. But the amorphous $TiO_2$ sol coatings showed a negative effect. After 144h light exposure, the modified silane binder-coated fibers showed less degradation in mechanical properties with the retained tensile strength greater than about 70% of the original value.

$Pr_{6}O_{11}$계 ZnO 바리스터의 전기적 안정성에 소결온도의 영향 (Effect of Sintering Temperature on Electrical Stability of $Pr_{6}O_{11}$-Based ZnO Varistors)

  • 남춘우;류정선
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.640-646
    • /
    • 2001
  • The electrical stability for DC stress of Pr$_{6}$O$_{11}$-based ZnO varistos consisting of ZnO-Pr$_{6}$O$_{11}$-CoO-Cr$_2$O$_3$-Er$_2$O$_3$-based ceramics were investigated with sintering temperature in the range of 1325~1345$^{\circ}C$. A the sintering temperature is raised, the nonlinear exponent of varistors was decreased, whereas the stability was markedly improved. The density of ceramics was found to greatly affect the electrical stability for DC stress. The varistors sintered at 13$25^{\circ}C$ were completely degraded because of thermal runaway attributing to low density. The varistors sintered at 1335$^{\circ}C$ exhibited the highest nonlinearity, with a nonlinear exponent of 70.53 and a leakage current of 1.92$\mu$A, whereas they did not exhibit relatively high stability. On the contrary, the varistors sintered at >134$0^{\circ}C$ exhibited not only a high nonlinearity marking the nonlinear exponent above 50 and the leakage current below 3$\mu$A, but also a high stability marking the variation rate of the varistor voltage below 2%, even under DC stress such as (0.80V$_{1mA}$/9$0^{\circ}C$/12h)+(0.85V$_{1mA}$/115$^{\circ}C$/12h)+(0.90V$_{1mA}$/12$0^{\circ}C$/12h)+(0.95V$_{1mA}$/1$25^{\circ}C$/12h)+(0.95V$_{1mA}$/15$0^{\circ}C$/12h). In particular, ti was found that the varistors sintered at 134$0^{\circ}C$ were more nonlinear and more stable, compared with that of 1345$^{\circ}C$.EX>.}C$.EX>.

  • PDF