• Title/Summary/Keyword: material softening

Search Result 284, Processing Time 0.026 seconds

Numerical determination of crack width for reinforced concrete deep beams

  • Demir, Aydin;Caglar, Naci
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.193-204
    • /
    • 2020
  • In the study, a new, simple and alternative formula is proposed to calculate numerically crack widths of concrete on a finite element (FE) model. By considering more general tension softening behavior of concrete, the proposed expression is derived irrespective of any tension softening model given in the literature or design codes. The test results of six reinforced concrete (RC) deep beams having different geometrical and material properties selected from a recent existing experimental study of the authors are used to verify the accuracy and reliability of the proposed formula and the created numerical FE models of the specimens. Moreover, the crack width results obtained from the FE models are compared with the test results to see the performance of the proposed formula. The results of the study demonstrate that the proposed formula gives very accurate results in a comparison with the test results. The ratios of errors on the results stay commonly at an acceptable level as well. Consequently, the proposed formula is quite simple, unique, and robust to determine crack widths of RC deep beams on an FE model.

Finite Element Limit Analysis of a Nuclear Reactor Lower Head Considering Thermal Softening in Severe Accident (중대사고에서의 열적 연화를 고려한 원자로 하부구조의 유한요소 극한해석)

  • Kim, Kee-Poong;Huh, Hoon;Park, Jae-Hong;Lee, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.782-787
    • /
    • 2001
  • This paper is concerned with the global rupture of a nuclear reactor pressure vessel(RPV) in a severe accident. During the severe reactor accident of molten core, the temperature and the pressure in the nuclear reactor rise to a certain level depending on the initial and subsequent condition of a severe accident. While the rise of the temperature cause the thermal softening of RPV material, the rise of the internal pressure could cause failure of the RPV lower head. The global rupture of an RPV is simulated by finite element limit analysis for the collapse pressure and mode and this analysis results have been compared with a variation of the internal pressure of RPV. The finite element limit method is a systematic tool to secure the safety criteria of a nuclear reactor and to evaluate the in-vessel corium retention.

  • PDF

Simulation of fracture in plain concrete modeled as a composite material

  • Bui, Thanh T.;Attard, Mario M.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.499-516
    • /
    • 2005
  • A composite model is used to represent the heterogeneity of plain concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The composite elements of plain concrete are modeled using triangular finite element units which have six interface nodes along the sides. Fracture is captured through a constitutive single branch softening-fracture law at the interface nodes, which bounds the elastic domain inside each triangular unit. The inelastic displacement at an interface node represents the crack opening or sliding displacement and is conjugate to the internodal force. The path-dependent softening behaviour is developed within a quasi-prescribed displacement control formulation. The crack profile is restricted to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. An event by event solution strategy is adopted to eliminate solutions with simultaneous formation of softening zones in symmetric problems. The composite plain concrete model is compared to experimental results for the tensile crack growth in a Brazilian test and three-point bending tests on different sized specimens. The model is also used to simulate wedge-type shear-compression failure directly under the loading platen of a Brazilian test.

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping;Shan, Huafeng;Chu, Weishen;Chen, Yongji
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.101-115
    • /
    • 2022
  • Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

Material property of fiber reinforced concrete according to the fiber blended ratio (섬유 혼입 비율에 따른 섬유보강 콘크리트의 재료특성)

  • Park Choon Gun;Kim Nam Hol;Lee Jong Pil;Kim Hag Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.632-635
    • /
    • 2004
  • In this paper, material property of fiber reinforced concrete(FRC) according to the steel fiber, glass fiber and carbon fiber blended ratio. The fiber reinforced concretes are increased mechanical strength, because the fibers are dispersed with randomly direction and disturb crack progression in concretes. Adhesive fracture is occurred slowly at interface between fiber and concrete, and the fracture energy is absorbed due to softening phenomenon.

  • PDF

Crack Analysis of the Quasi-Brittle Materials Using a Stochastic Model (물성의 확륙적 분포를 이용한 Quasi-Brittle 재료의 균열해석)

  • 임윤목;김문겸;신승교;박진완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Usually, the failure of quasi-brittle materials is numerically difficult to describe because of the localization process with softening behavior. In this study, ADLE(Axial Deformation Link Elements) with stochastic material properties are developed to simulate the quasi-brittle material failure behavior. The ADLE method is adopted both Fictitious Crack Model and stochastic method to implement the fracture behavior with the localization behavior of quasi-brittle materials. The main objective of this paper is to show the mash independency and the capability of ADLE for the failure behavior of a quasi-brittle materials.

  • PDF

Optical Properties as Process Condition of Color Conversion Lens Using Low-softening Point Glass for White LED (백색 LED용 저 연화점 유리를 이용한 색 변환 렌즈의 제조 조건에 따른 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Recently, remote phosphors have been reported for application to white LEDs to provide enhanced phosphor efficiency compared with conventional phosphor-based white LEDs. In this study, a remote phosphor was produced by coating via screen printing on a glass substrate with different numbers of phosphor coating. The paste consists of phosphor, lowest softening glass frits, and organic binders. The remote phosphor could be well controlled by varying the phosphor content rated paste. After mounting the remote phosphor on top of a blue LED chip, CCT, CRI, and luminance efficiency were measured and values of 5300 K, 62, and 117 lm/W were respectively obtained in the 80 wt% phosphor with 3 coating layers sintered at $800^{\circ}C$.

The Basic Study on Machinability of Ceramics in CO2 Laser Assisted Machining (CO2 레이저 보조가공에 의한 세라믹재료의 가공성에 관한 기초 연구)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.322-329
    • /
    • 2009
  • Machinability of LAM(Laser Assisted Machining) has been studied for ceramics such as $Al_2O_3$, $Si_3_N4$ and $ZrO_2$ by $CO_2$ laser. It was possible to remove ceramics by PCBN tool because material became softening and deterioration by local laser beam irradiation. The advantage of LAM is the ability to produce larger material removal rates and tool life. But, for cutting of $Al_2O_3$ and $ZrO_2$, stage of laser power control was needed owing to thermal shock with high temperature of workpiece by laser power. And when $Si_3N_4$ was machined by LAM, $N_2$ gas spouted from surface of one cause of high temperature. Characteristics of LAM were analyzed using pyrometer, dynamometer, SEM and EDS to measure temperature of workpiece surface, cutting force, variation of machining surface and structure of lattice respectively. As the result of this study, it was found that machinability of LAM for ceramics in $CO_2$ laser and mechanism of LAM was different according to the kind of ceramics because of properties of materials.

Effect of Washing and Subsequent Heat Treatment on Water Repellency and Mechanical Properties of Nylon 6, Triacetate and Silk Fabrics Treated with Hydrocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul;Nishi, Kenji;Wakida, Tomiji
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.87-91
    • /
    • 2008
  • It is commonly known that water repellency of the fabric treated with fluorocarbon resin brings about a decrease by the washing and recovers by the subsequent heat treatment. In this article, effect of the water repellency was investigated on the nylon 6, triacetate and silk fabrics treated with hydrocarbon and silicon resins. Hydrocarbon and silicon resins have been widely used in the textile finishing as the softening and water proofing agents. The fabrics were treated with hydrocarbon resins, Paragium JQ and RC (Ohara Paragium Chemical Co.) and a silicon resin, Poron MR (Shinetsu Chemical Co.), and then washed and subsequently heat treated. Although the water repellency increased by the resin treatment, it decreased by the washing apparently and recovered a little by the heat treatment. The effect of the heat treatment was small comparing with that of the fluorocarbon resin. Furthermore, as a mechanical property of the treated fabric, KES shearing and bending hysteresis parameters, modulus and hysteresis width of the hydrocarbon resin-treated nylon 6, triacetate and silk fabrics decreased by the heat treatment after washing. Therefore, the treatment is effective at improving the softening of the fabric in water repellent finish.

A study on the sintering and dielectric properties by softening point of glass in low temperature sinterable glass-ceramics (저온 소성용 Glass-Ceramics에서 glass의 softening point에 따른 소결 및 유전 특성 연구)

  • Yoon, Sang-Ok;Oh, Chang-Yong;Kim, Kwan-Soo;Jo, Tae-Hyun;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.396-399
    • /
    • 2004
  • 저온 동시소성용 glass-ceramics의 소결 경향성 연구를 위해 lead-borosilicate계 glass를 frit화하여 알루미나분말과 $TiO_2$분말을 $10{\sim}50\;vol%$로 각각 혼합한 후 여러 온도에서 소결하여 소결과 유전 특성을 조사하였다. 그 결과 glass의 연화온도(Ts)가 낮을수록 최대 치밀화 온도가 낮았으며, 반면에 소결밀도는 Ts가 높을수록 높았는데, 이는 glass-ceramicss에서의 결정화도와 관계하였다. 본 연구를 통해 glass-ceramic에서의 소결특성은 glass와 ceramic의 반응성에 의한 2상 석출 정도에 큰 영향을 받음을 알 수 있었으며, ceramic filler로서 알루미나와 $TiO_2$를 이용하여 $900^{\circ}C$에서 소성이 가능하였다. 알루미나의 경우 유전특성$({\epsilon}r=8.5,\;Q{\times}fo=6000)$이 기판용 저유전율 재료로 사용이 가능하였고, $TiO_2$의 경우도 유전특성($({\epsilon}r=17,\;Q{\times}fo=4000)$)이 필터용 고유전율 재료로 사용 가능하도록 높게 나타났다.

  • PDF