• 제목/요약/키워드: material resistance factor

검색결과 335건 처리시간 0.028초

전기저항식 변형률 게이지를 이용한 콘크리트의 열팽창계수 측정법 (Coefficient of Thermal Expansion Measurement of Concrete using Electrical Resistance Strain Gauge)

  • 남정희;안덕순;김연복
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.25-32
    • /
    • 2013
  • PURPOSES : The purpose of this study is to provide the method of how to measure the coefficient of thermal expansion of concrete using temperature compensation principle of electrical resistance strain gauge. METHODS : The gauge factor compensation method and thermal output(temperature-induced apparent strain) correction method of self-temperature compensation gauge were investigated. From the literature review, coefficient of thermal expansion measurement method based on the thermal output differential comparison between reference material(invar) and unknown material(concrete) was suggested. RESULTS : Thermal output is caused by two reasons; first the electrical resistivity of the grid conductor is changed by temperature variation and the second contribution is due to the differential thermal expansion between gauge and the test material. Invar was selected as a reference material and it's coefficient of thermal expansion was measured as $2.12{\times}10^{-6}m/m/^{\circ}C$. by KS M ISO 11359-2. The reliability of the suggested measurement method was evaluated by the thermal output measurement of invar and mild steel. Finally coefficient of thermal expansion of concrete material for pavement was successfully measured as $15.45{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : The coefficient of thermal expansion measurement method using thermal output differential between invar and unknown concrete material was evaluated by theoretical and experimental aspects. Based on the test results, the proposed method is considered to be reasonable to apply for coefficient of thermal expansion measurement.

초고압 GIS용 에폭시 절연물 배리어 파단 특성 (Mechanical Fracture Characteristic of Epoxy Insulation Barrier for High Voltage GIS)

  • 서왕벽
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.641-645
    • /
    • 2017
  • In this study, an epoxy insulation barrier for high voltage GIS was developed using epoxy and a filler with a Young's modulus of 11 GPa. The material was investigated using a simulation of the principal stress, displacement, and safety factors while optimizing the profile shape. The simulation showed that thelarger Young's modulus of the $Al_2O_3$ filler compared to the $SiO_2$ in the epoxy insulation can contribute to an increase in resistance to mechanical fracturing for theoptimized profile barrier in high voltage GIS. In addition, the safety factor was improved by 10%. It can be concluded that the mechanical fracturing properties of the insulation barrier can be enhanced by increasing the content of the elastic filler, $Al_2O_3$, for high voltage GIS applications.

자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향 (The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material)

  • 기우태;박성모;문광석;박경동
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.

도로교설계기준(한계상태설계법)의 콘크리트부재 설계를 위한 재료계수 결정법 및 신뢰도 분석 (New Approaches for Calibrating Material Factors of Reinforced Concrete Members in Korean Highway Bridge Design Code (Limit State Design) and Reliability Analysis)

  • 이해성;송상원;김지현
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.13-24
    • /
    • 2019
  • 이 연구에서는 국내 도로교 한계상태설계법에서 콘크리트부재의 설계를 위하여 적용하고 있는 재료계수의 문제점을 제기하고, 잘 정립된 최적화 과정에 의한 재료계수를 제안하였다. 신뢰도분석을 통하여 현 설계기준의 하중계수와 제안 재료계수가 목표신뢰도지수 보다 높은 신뢰도수준을 확보하고 있음을 보이고, 역신뢰도해석을 통하여 목표신뢰도지수를 잘 근사할 수 있는 하중계수를 제시하였다. 유로코드에서 제시하고 있는 기본 개념에 근거하여 신뢰도기반 하중-재료계수 결정법을 정식화하였다. 제안된 접근법이 신뢰도개념에 의하여 유도되었지만, 이 접근법에 의하여 계산된 하중-재료 계수가 목표신뢰도지수를 정확히 만족시키지 못하는 요인으로서 재료와 부재간에 존재하는 불확실성의 차이를 지적하고, 이러한 차이를 고려하지 않는 유로코드의 개념적 문제점을 제기하였다.

투과증발법을 이용한 감귤 Essence Aroma 모델액의 농축 (Concentration of Citrus Essence Aroma Model Solution by Pervaporation)

  • 이용택;박중원;신동호
    • 멤브레인
    • /
    • 제16권1호
    • /
    • pp.68-76
    • /
    • 2006
  • 본 연구는 투과증발법을 이용하여 수용액 중 미량의 감귤 향 성분을 농축하는 방법으로, 4종류의 실록산계 고분자 복합막을 이용하여 막 종류와 구조에 따른 투과 특성을 살펴보았다. 또한 최적의 막을 선정하여 공급액의 온도와 농도, 순환 유속에 따른 투과 특성을 살펴보고, 이를 resistance-in series model을 이용하여 해석하였다. 4종류의 실록산계 고분자 복합막을 통한 감귤 essence aroma 모델액의 투과 실험에서 지지층이 polyvinylidene fluoride (PVDF)이고 활성층이 polyoctylmethyl siloxane (POMS)인 막이 가장 높은 향 성분 플럭스와 농축계수 값을 나타내었으며, 공급액의 온도와 농도, 순환유속을 변화시키며 투과 실험을 하였다. 그 결과 공급액의 온도와 농도가 증가됨에 따라 향성분의 플럭스는 증가하고 농축계수 값은 감소하였으며 순환유속이 증가됨에 따라 향성분의 플럭스와 농축계수 값 모두 증가하였다.

Design models for predicting the resistance of headed studs in profiled sheeting

  • Vigneri, Valentino;Hicks, Stephen J.;Taras, Andreas;Odenbreit, Christoph
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.633-647
    • /
    • 2022
  • This paper presents the results from reliability analyses of the current Eurocode 4 (EN 1994-1-1) and AISC 360-16 design models for predicting the resistance of headed stud shear connectors within profiled steel sheeting, when the ribs are oriented transverse to the supporting beam. For comparison purposes, the performance of the alternative "Luxembourg" and "Stuttgart" model were also considered. From an initial database of 611 push-out tests, 269 cases were included in the study, which ensured that the results were valid over a wide range of geometrical and material properties. It was found that the current EN 1994-1-1 design rules deliver a corrected partial safety factor γM* of around 2.0, which is significantly higher than the target value 1.25. Moreover, 179 tests fell within the domain of the concrete-related failure design equation. Notwithstanding this, the EN 1994-1-1 equations provide satisfactory results for re-entrant profiled sheeting. The AISC 360-16 design equation for steel failure covers 263 of the tests in the database and delivers 𝛾M*≈2.0. Conversely, whilst the alternative "Stuttgart" model provides an improvement over the current codes, only a corrected partial safety factor of 𝛾M*=1.47 is achieved. Finally, the alternative "Luxembourg" design model was found to deliver the required target value, with a corrected partial safety factor 𝛾M* between 1.21 and 1.28. Given the fact that the Luxembourg design model is the only model that achieved the target values required by EN 1990, it is recommended as a potential candidate for inclusion within the second generation of Eurocodes.

가압력 변화에 따른 표면조도처리 강판의 저항 점 용접성 비교 (A Comparison of Spot Weldability with Electrode Force Changes in Surface Roughness Textured Steel)

  • 박상순;박영도;김기홍;최영민;임영목;강남현
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.75-84
    • /
    • 2008
  • With the development of surface roughness textured steel for automotive body-in-white assemble, one of key issues is to understand the role of the surface roughness in textured steel sheets. To investigate effect of surface roughness on weldability in prepared steels, electrode force was varied. Steel sheets (T-H) with high surface roughness ($Ra\;=\;1.94\;{\mu}m$) reduced electrode life. It was attributed to the higher contact resistance at the electrode-sheet interface in the presence of the high surface roughness. The increased electrode diameter decreased current density, therefore reducing weld electrode life due to small weld button size. When an increased electrode force was used, a significant increase in the electrode life was observed in welding of high surface roughness steel sheet. This study suggested that contact resistance at the electrode-sheet interface was the dominant factor, as compared to the sheet-sheet interface for determining electrode life in welding of surface roughness textured steel.

내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지 (Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing)

  • 최재호;변영민;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

광섬유 센서를 이용한 PSC 합성형교의 응답보정계수 영향인자 분석 (Impact Factor Analysis of Response Adjustment Factor of PSC Composite Bridge Using Optical Fiber Sensor)

  • 김호선;장화섭;양동운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.35-43
    • /
    • 2012
  • 일반적으로 교량의 하중저항능력인 내하력은 교량의 거동에 큰 영향을 줄 수 있는 심각한 손상, 결함, 재료적인 열화현상이 존재하지 않는다면 이론적인 방법으로 평가한 내하력보다 여유가 있다. 그러나 현재 내하력을 구하기위한 재하실험 및 구조해석 과정에서 이미 오차가 포함되어 있어 응답보정계수의 신뢰성이 떨어지고 있다. 이에 본 연구에서는 센서의 센싱 문제와 구조해석 모델의 적정성에 오차를 해결하기 위하여 센서부에서 기존의 전기저항식 변형률, 변위 센서의 문제점을 도출하여 성능이 우수한 스마트 센서인 광섬유 스마트 센서로의 변화를 추진하고자 한다. 또한, 다양한 구조해석 모델 해석을 통하여 최적의 적정 모델을 선정함으로서 응답보정계수의 정확성을 향상시키고자 하였다.

인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가 (Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels)

  • 박상순;최영민;남대근;김영석;유지훈;박영도
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.