• 제목/요약/키워드: material recycle

검색결과 272건 처리시간 0.021초

석탄 저회로 제조한 인공토양의 기능성 건설재 적용 가능성 (Application for Functional Construction Materials of Artificial Soil Manufactured Using Coal Bottom Ash)

  • 김강덕;이영생
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.300-306
    • /
    • 2014
  • To recycle coal bottom ash(denoted here as CBA) generated from thermal power plants as a functional construction material, artificial soil(denoted as AS) containing CBA with dredged soil(denoted as DS) at a ratio(wt%) of 70 : 30 was manufactured by means of material engineering with sintering in a rotary kiln at $1125^{\circ}C$ using a green body formed via extrusion processing. The properties of the soil mechanics of the AS and the as-received CBA were analyzed and compared. Compaction testing results determined an optimum moisture content of the AS and CBA at 18%. During these tests, the maximum dry unit weights of the materials were similar, at 1.57 and 1.58 $t/m^3$, respectively. The compressive strength levels of the AS and CBA concrete specimens were 5.1 and 5.4 $t/m^3$, respectively, both of which increased after materials engineering processing. In a consolidation test, the compression index of the AS and CBA was found to be $0.114{\pm}0.001$ in both cases. The values were similar regardless of the materials engineering processes, but during the consolidation of AS, its coefficient was higher than that of the CBA materials.

재활용 슬러리를 사용한 2단계 CMP 특성 (Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry)

  • 이경진;서용진;최운식;김기욱;김상용;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.39-42
    • /
    • 2002
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity(WIWNU) were measured as a function of different slurry composition. As a experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows In the first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saving of high costs of slurry.

  • PDF

실리카 연마제가 첨가된 재활용 슬러리를 사용한 2단계 CMP 특성 (Characteristics of 2-Step CMP (Chemical Mechanical Polishing) Process using Reused Slurry by Adding of Silica Abrasives)

  • 서용진;이경진;최운식;김상용;박진성;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.759-764
    • /
    • 2003
  • Recently, CMP (chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of roused silica slurry in order to reduce the costs of CMP slurry. The post-CMP thickness and within-wafer non-uniformity (WIWNU) wore measured as a function of different slurry composition. As an experimental result, the performance of reused slurry with annealed silica abrasive of 2 wt% contents was showed high removal rate and low non-uniformity. Therefore, we propose two-step CMP process as follows , In tile first-step CMP, we can polish the thick and rough film surface using remaked slurry, and then, in the second-step CMP, we can polish the thin film and fine pattern using original slurry. In summary, we can expect the saying of high costs of slurry.

De-link R를 이용한 폐고무 재활용(I) (Recycling of Waste Rubber by De-link System (I))

  • 황성혁;홍존희;유태욱;김진국
    • Elastomers and Composites
    • /
    • 제36권2호
    • /
    • pp.79-85
    • /
    • 2001
  • 폐고무의 증가로 인하여 환경문제가 날로 심각해지고 있다. 그러므로 효율적인 재활용을 통하여 이러한 문제를 해결하는데 많은 연구가 진행되고 있다. 본 연구에서는 탈황시스템을 이용하여 폐고무 분말의 가황 결합을 분리함으로서 기본물성을 높이는데 목적을 두었다. 폐고무분말의 입자크기에 따른 물성의 변화와 De-link 함량 증가에 따른 물성을 조사하였고 De-link를 함유한 시료를 기존 배합물에 10phr 충전하여 유변학적, 기계적 및 가교도 등의 물성을 조사하였다. 또한 광학현미경을 사용하여 표면을 확인함으로서 제품특성을 연구하였다.

  • PDF

폐유리를 재활용한 인공경량골재의 발포기구 (Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass)

  • 강신휴;이기강
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성 (Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste)

  • 박차원;안재철;강병희
    • 한국건축시공학회지
    • /
    • 제6권4호
    • /
    • pp.61-68
    • /
    • 2006
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement's performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

폐가공송전선 Al선재 재활용 기술개발 (The Recycling Technology for Aged Aluminum Wire in Overhead Conductor)

  • 김상수;구재관;이영호;김병걸
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.555-562
    • /
    • 2013
  • The new recycling technology for aged aluminum wires in overhead conductor has been carried out. The authors are attempting to develop remanufacturing method for them for more effective way of recycling in stead of its conventional remelting process. The new recycling technology for aged aluminum wire in overhead conductor was composed of four steps in different develop process, destranding process for conductor, surface cleaning process, welding process and drawing process for aluminum wire. This paper investigates the properties during recycle process of aged aluminum wire. The results of microscopic analysis and mechanical properties were discussed to underscore recycling aluminum wire. Various graphs are presented accompanied by discussion about their relevance on the process. In conclusion, we confirmed the possibility of remanufacturing technique by using new process.

Quick Judgments of Properties of Fine Aggregate to Use the Electric Arc Furnace Oxidizing Slag

  • Lee, Hyung-Min;Lee, Han-Seung;Choi, Jae-Seok
    • 한국건축시공학회지
    • /
    • 제11권5호
    • /
    • pp.442-451
    • /
    • 2011
  • Blast furnace slag is recycled as a high value-added material, while steel slag is difficult to recycle or is recycled as a low-grade filler material due to its expansive characteristics. Its property is caused by the high content of free lime and instable steel oxides. Recently, an innovative and rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to a minimum level and increases the stability of steel oxides. However, researches on the long-term stability are not sufficient so far. Therefore, this study, focusing on the electric arc furnace oxidizing slag in the steel slag, aims to investigate the properties of the steel slag aggregate, its long-term volume stability and the engineering strength of mortar, and using it as a fine aggregate. This study result indicated that it was possible for it to be used as concrete aggregate because the volume change of the steel slag appeared to be stable.

Development of integrated waste management options for irradiated graphite

  • Wareing, Alan;Abrahamsen-Mills, Liam;Fowler, Linda;Grave, Michael;Jarvis, Richard;Metcalfe, Martin;Norris, Simon;Banford, Anthony William
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1010-1018
    • /
    • 2017
  • The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds in a Neutral Salt Electrolyte

  • Park, W. K.;Y. M. Yang;C. H. Jung;H. J. Won;W. Z. Oh;Park, J. H.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.689-695
    • /
    • 2003
  • Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as $UO_2$, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate(UN) with tributylphosphate(TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral salt electrolytes. The effects of type of neutral salt as the electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components.

  • PDF