• Title/Summary/Keyword: material property identification

Search Result 30, Processing Time 0.169 seconds

Evaluation of the Properties of Wrapping Material of Steel Pipe for Water Supply (수도용 강관의 도복장 재료특성 평가에 관한 연구)

  • Lee, Hyun-Dong;Lee, Ji-Eun;Kwak, Phill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.331-338
    • /
    • 2008
  • Coal-tar enamel, blown asphalt and polyethylene have been used as wrapping materials of steel pipe in Korea. Currently, every manufacturer produces wrapped steel pipes with different materials and methods, and little research has been performed to get on wrapping methods and materials. In this research, properties of wrapping material of steel pipe used for water supply have been evaluated. All of the materials tested in this work were found to meet the standard. Among the wrapping materials of steel pipe tested, blown asphalt and coal-tar enamel were reasonable in price, and their mechanical properties were excellent. The quality of the wrapped steel pipes was being melted easily in organic solvent. When coated thick, the load of the steel pipes was higher than necessary. Tensile strength of cathode exfoliation and PE 3-layer wrapping method was excellent. The pulling intensity of T-Die PE 3-layer was stronger than PE fluidized in PE wrapping method. Cathode exfoliation area was smaller than PE fluidized. Mechanical property and thermo-property of T-Die PE 3-layer were excellent and its anti-chemical property was great. Liquid epoxy can change the property of coating materials depending on the hardening condition and resin selection. Polyurethane used in this test showed a less adhesive strength with steel pipes than epoxy. Moisture absorbance rate was higher than Epoxy's, however. To utilize polyurethane as wrapping materials, basic property of the matter should be improved followed by finding the best suited coating condition. The method of PE 3-layer by extrude method appeared to be the best in this study. However, identification of other wrapping materials requires further additional tests.

Study on Inverse Approach to Validation of Viscoplastic Model of Sn37Pb Solder and Identification of Model Parameters (Sn37Pb 솔더의 점소성 모델 검증 및 파라메터 추정을 위한 역접근법에 관한 연구)

  • Gang, Jin-Hyuk;Lee, Bong-Hee;Choi, Joo-Ho;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1377-1384
    • /
    • 2010
  • The objective of this study is to determine the best material model that represents the deformation behavior of the Sn37Pb solder alloy accurately. First, a specimen is fabricated and subjected to a thermal cycle with temperatures ranging from the room temperature to $125^{\circ}C$. An experiment is conducted to examine deformation by Moire interferometry. Three different constitutive equation models are used in the finite element analysis (FEA) of the thermal cycle. In order to minimize the difference between the FEA results and the experimental results, the material parameters of the solder alloy are considered to be unknown and are determined by conducting optimization. As a result of the study, the Anand model is found to represent the deformation behavior of the solder most accurately.

ANALYSIS OF NECKING DEFORMATION AND FRACTURE CHARACTERISTICS OF IRRADIATED A533B RPV STEEL

  • Kim, Jin Weon;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.953-960
    • /
    • 2012
  • This paper reports the irradiation effect on the deformation behavior and tensile fracture properties of A533B RPV steel. An inverse identification technique using iterative finite element (FE) simulation was used to determine those properties from tensile data for the A533B RPV steel irradiated at 65 to $100^{\circ}C$ and deformed at room temperature. FE simulation revealed that the plastic instability at yield followed by softening for higher doses was related to the occurrence of localized necking immediately after yielding. The strain-hardening rate in the equivalent true stress-true strain relationship was still positive during the necking deformation. The tensile fracture stress was less dependent on the irradiation dose, whereas the tensile fracture strain and fracture energy decreased with increasing dose level up to 0.1 dpa and then became saturated. However, the tensile fracture strain and fracture energy still remained high after high-dose irradiation, which is associated with a large amount of ductility during the necking deformation for irradiated A533B RPV steel.

Effect of Tm2O3 addition on dielectric property of barium titanate ceramics for MLCCs (Tm2O3 첨가가 MLCC용 $BaTiO3 유전특성에 미치는 영향)

  • Kim, Jin-Seong;Lee, Hee-Soo;Kang, Do-Won;Kim, Jeong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2010
  • Thulium oxide-doped barium titanate ceramics for MLCCs with perovskite structure were prepared by a sintering process at $1320^{\circ}C$ for 2 h in a reduced atmosphere. The effect of $Tm_2O_3$ addition on dielectric property of barium titanate ceramics has been studied in terms of their microstructures. Moreover, the phase identification of the dielectric specimens was conducted to define the secondary phase (pyrochlore). The specimen doped with 1 mol% $Tm_2O_3$ exhibited the highest dielectric constant. However, the dielectric constants of specimens with more than 2 mol% $Tm_2O_3$ to $BaTiO_3$ were the lower values than that of 1 mol% doped one. The grain size and the formation of pyrochlore phase associated with the dielectric properties were examined through morphology development and the structural analysis. Furthermore, these data were compared with the property of the dielectric material doped with $Er_2O_3$. It could be concluded that the dielectric property of ceramic capacitors were attributed to the change of pyrochlore phase and the tetragonality of $BaTiO_3$ with doping.

Preparation of $\beta$-Cyclodextrinized Cellulosic Fiber and Deodouring Property ($\beta$-시클로덱스트린화 셀룰로오스 섬유의 제조 및 소취성)

  • Choi, Chang-Nam;Hwang, Tae-Yeon;Ko, Bong-Kook;Kim, Ryong;Hong, Sung-Hak;Kim, Sang-Yool
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.635-641
    • /
    • 2001
  • $\beta$-Cyclodextrine/benzoic acid complex was prepared and reacted with cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). Identification of complex formation and reaction was checked by FT-IR, UV-Vis, and EDX. By reacting this material with cotton fiber, the deodourant fiber was prepared. The deodourizing property was evaluated by the concentration changes of aqueous ammonia solution after flowing ammonia gas through the column titled with deodourant fiber prepared. The deodourizing property was increased with an increase of concentration of $\beta$-cyclodextrine unit in the fiber. In the case of $\beta$-cyclodextrine/benzoic acid complex, the deodourzing property was much increased, comparing with the $\beta$-cyclodextrine only. It was considered to be the binding of aamonia gas caused by benzoic acid in the complex.

  • PDF

Challenges and Effective Management of Supply Chain in Wine Industry and Agribusiness

  • Ngoe, Tata Joseph
    • Agribusiness and Information Management
    • /
    • v.4 no.2
    • /
    • pp.32-41
    • /
    • 2012
  • Studies have shown that the future of the wine market rests on the effective and efficient changes in technology to the supply chain used by most of the major global players. In today's wine industry, companies are faced with the ever-shifting demand for their products, strict regulation and increasing price competition. Even at that, mature companies in the wine industry are succeeding by scaling up production, streamlining their supply chains, expanding into new geographic areas, implementing more efficient processes, cleverly marketing products, and focusing on ever closer relationships with suppliers, partners and customers. However, this paper looks at supply chain challenges in the wine industry from a global perspective presented in the inbound, manufacturing and outbound processes as well as offer effective solutions in order for companies to gain a competitive advantage and succeed on a global level.

  • PDF

Inverse Estimation of Viscoplastic Properties of Solder Alloy Using Moir$\acute{e}$ Interferometry and Computer Model Calibration (모아레 간섭계와 모델교정법을 이용한 솔더 합금의 점소성 물성치 역추정)

  • Gang, Jin-Hyuk;Lee, Bong-Hee;Joo, Jin-Won;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.97-106
    • /
    • 2011
  • In this study, viscoplastic material properties of solder alloy which is used in the electronics packages are inversely estimated. A specimen is fabricated to this end, and an experiment is conducted to examine deformation by Moir$\acute{e}$ interferometry. As a result of the experiment, bending displacement of the specimen and shear strain of the solder are obtained. A viscoplastic finite element analysis procedure is established, and the material parameters are determined to match closely with the experiments. The uncertainties which include inherent experimental error and insufficient data of experiments are addressed by using the method of computer model calibration. As a result, material parameters are identified in the form of confidence interval, and the displacements and strains using these parameters are predicted in the form the prediction interval.

Study on identification of plastic used for modern artwork (플라스틱류 작품의 동정 기술 연구)

  • Yu, Ji A;Chung, Yong Jae;Ham, Seung Wook
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.100-107
    • /
    • 2014
  • Plastic has been widely used in modern artworks' materials due to its merits of process ability and mass production. In the country, value of plastic artifact is increasing but the field of plastic study is limited to industrial purpose. In this study, Identification methods of plastic were performed by SPME-GC/MS and pyrolysis-GC/MS using trace of samples. As a result of identification using SPME-GC/MS, aromatic compounds were identified from polyvinyl chloride. And alkane compounds were identified from polyethylene, and polypropylene. Aromatic compounds were identified from polystyrene, and diethylene glycol appeared in polyurethane based on polyester was identified from polyurethane. As a result of identification using pyrolysis- GC/MS, aliphatic alkenes compounds and phthalate(DEHP) were identified from polyvinyl chloride. Aliphatic alkenes compounds and phthalate(DIBP) were detected from polyethylene. 1-hexene, etc., were detected from polypropylene, aromatic compounds were identified from polystyrene, and methylene diphenyl diisocyanate which is polyurethane basic material was confirmed from polyurethane. This study suggested that non-destructive SPME and pyrolysis-GC/MS are useful to identify compounds particularly polystyrene and polyurethane. These two analytical methods were expected to be applied for identification of unidentified plastic artworks before conservation treatment.

A Study of Emergency Plan Making Programs for Personnel Handling Accident Precaution Chemicals (사고대비물질 취급자를 위한 비상대응계획 작성 프로그램 연구)

  • Kim, Sung Bum;Cho, Mun Sik;Park, Choon Hwa;Yoon, Yi;Hwang, Kyung Sup;Yang, Sang Yong
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.27-32
    • /
    • 2010
  • Emergency preparedness plan (EPP) is the systematic management of activities that involve a material degree of risk of loss or other damage to the surroundings (people, property and environment), and the boundary of accident recovery plan (ARP). The main purpose of the program is to provide a safety management system to each facility in order to enable to prevent accident and to control accident immediately. The EPP includes not only typical safety-related documentations such as material safety data sheet (MSDS), standard operation procedure (SOP), emergency response plan(ERP). EPP is established basis of the preliminary safety analysis involving risk identification, assessment and prevention plans. The program is also helpful for government or related agencies to control a number of accidents in small-scale companies in the whole country.

  • PDF

A Study on the Prevention of Train Accidents Caused by Heavy Rains (폭우로 인한 열차사고 예방에 관한 연구)

  • Kim, Ki-Young;Seo, Gyu-Suk;Choi, Byung-Gie;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.35-43
    • /
    • 2009
  • The specific feature of trains as a means of transportation is that, on one side, at once they can carry big loads but, at the same time, if an accident occurs, it potentially leads to many human casualties or big material losses. Especially, train accidents caused by bad weather conditions result in many fatal losses of human lives and property. In Korea many railways run either in mountainous areas or along rivers thus making them especially susceptible to natural hazards. The types of damages inflicted by heavy rains resulting from rapidly changing meteorological conditions are diverse; and not only their scope is big but also they repeat regularly. Consequently, this study analyses the reasons why such effects of heavy rains on the railway conditions, damage to the railways caused by heavy rains or cases of stone fall as well as other types of accidents are not avoided. Study also, on the basis of laws related to movement in poor weather conditions and specifics of train braking, identifies systematic and technical problems and suggests and emphasizes new complex measures on their prevention.

  • PDF