Inverse Estimation of Viscoplastic Properties of Solder Alloy Using Moir$\acute{e}$ Interferometry and Computer Model Calibration

모아레 간섭계와 모델교정법을 이용한 솔더 합금의 점소성 물성치 역추정

  • 강진혁 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이봉희 (충북대학교 기계공학과) ;
  • 주진원 (충북대학교 기계공학부) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2010.10.07
  • Accepted : 2010.11.22
  • Published : 2011.02.28

Abstract

In this study, viscoplastic material properties of solder alloy which is used in the electronics packages are inversely estimated. A specimen is fabricated to this end, and an experiment is conducted to examine deformation by Moir$\acute{e}$ interferometry. As a result of the experiment, bending displacement of the specimen and shear strain of the solder are obtained. A viscoplastic finite element analysis procedure is established, and the material parameters are determined to match closely with the experiments. The uncertainties which include inherent experimental error and insufficient data of experiments are addressed by using the method of computer model calibration. As a result, material parameters are identified in the form of confidence interval, and the displacements and strains using these parameters are predicted in the form the prediction interval.

본 연구에서는 전자패키지에 사용되는 솔더 재료의 점소성 물성치를 규명하였다. 이를 위해 전자패키지와 비슷한 변형을 보이는 시편을 제작하였고 모아레 간섭계를 이용하여 열사이클 하에서의 변형을 측정한 뒤 시편의 굽힘 변위와 솔더의 전단 변형률을 구하였다. 시편에 대해 점소성 유한요소해석을 실시하였고 해석 결과가 실험 결과에 일치하도록 물성치를 역으로 추정하였다. 실험에서 발생한 측정오차와 실험횟수 부족 등의 불확실성을 고려하기 위해 컴퓨터 모델 교정법을 이용하였고, 그 결과 추정된 물성치는 평균 및 신뢰구간으로 표현되었으며, 이로 인한 유한요소해석 결과도 마찬가지로 평균 및 신뢰구간으로 표현되었다.

Keywords

References

  1. 주진원, 김한준, 이우혁, 김진영, 최주호 (2007) 무아레 간섭 계 측정과 최적화 기법을 이용한 적층판의 접착제 물성치 규명, 대한기계학회논문집 A권, 31(11), pp.1100∼107.
  2. 한창운, 박노창, 오철민, 홍원식, 송병석 (2010) SnPb 솔더 에 대한 유한요소모델의 크리프 특성 검증, 대한기계학회논문집 A권, 34(1), pp.43∼48.
  3. Amagai, M., Watanabe, M., Omiya, M., Kishimoto, K., Shibuya, T. (2002) Mechanical Characterization of Sn-Ag-based Lead-free Solders, Microelectronics Reliability, 42(6), pp.951∼966. https://doi.org/10.1016/S0026-2714(02)00017-3
  4. Anand, L. (1982) Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures, ASME Journal of Engineering Materials and Technology, 104, pp.12∼17. https://doi.org/10.1115/1.3225028
  5. Andrieu, C., Freitas, N., Doucet, A., Jordan, M.(2003) An Introduction to MCMC for Machine Learning, Machine Learning, 50(1-2), pp.5∼43. https://doi.org/10.1023/A:1020281327116
  6. Bayarri, M., Berger, J.O., Higdon, D., Kennedy, M., Kottas, A., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J.C., Lin, C.H., Tu, J. (2002) A Framework for Validation of Computer Models, National Institute of Statistical Sciences Technical Report.
  7. Bodner, S.R. (2002) Unified Plasticity for Engineering Applications, Kluwer Academic/Plenum Publishers, New York.
  8. Darveaux, R. (2000) Effect of Simulation Methodology on Solder Joint Crack Growth Correlation, Proc. of 50th Electronic Components and Technology Conference, pp.1048∼1058.
  9. Darveaux, R., Banerji, K., Mawer, A., Dody, G. (1995) Ball Grid Array Technology, McGraw Hill, New York.
  10. Frear, D., Grivas, D., Morris, J.W. (1988) A Microstructural Study of the Thermal Fatigue Failures of 60Sn-40Pb Solder Joints, Journal of Electronics Materials, 17(2), pp.171∼180. https://doi.org/10.1007/BF02652148
  11. Garofalo, F. (1965) Fundamentals of Creep and Creep-Rupture in Metals, The Macmillan Company, New York.
  12. Hall, P.M. (1984) Forces, Moments, and Displacements During Thermal Chamber Cycling of Leadless Ceramic Chip Carriers Soldered to Printed Boards, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, CHMT-7(4), pp.314∼ 327.
  13. Harvey, P.D. (1982) Engineering Properties of Steel, American Society for Metals, Ohio.
  14. Kennedy, M.C., O'Hagan, A. (2001) Bayesian Calibration of Computer Models, Journal of the Royal Statistical Society, 63(3), pp.425∼464. https://doi.org/10.1111/1467-9868.00294
  15. Kim, J.Y., Choi, J.H., Joo, J.W. (2008) A Study on Robust Optimization of Layered Plates Bonding Process Based on Inverse Analysis, Journal of Material Processing Technology, 201(1-3), pp.261 ∼266. https://doi.org/10.1016/j.jmatprotec.2007.11.223
  16. Lee, W.W., Nguyen, L.T., Selvaduray, G.S. (2000) Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages, Microelectronics Reliability, 40(2), pp.231∼244. https://doi.org/10.1016/S0026-2714(99)00061-X
  17. Loeppky, J.L., Bingham, D., Welch, W.J. (2006) Computer Model Calibration or Tuning in Practive, Technical Report 221, Department of Statistics, University of British Columbia, Canada.
  18. McKay, M.D., Beckman, R.J., Conover, W.J. (1979) A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21(2), pp.239∼245.
  19. Pao, Y.H., Badgley, S., Jih, E., Govila, R., Browning, J. (1993) Constitutive Behavior and Low Cycle Thermal Fatigue of 97Sn-3Cu Solder Joints, Journal of Electronic Packaging, 115(2), pp.147∼152. https://doi.org/10.1115/1.2909310
  20. Post, D., Han, B., Ifju, P. (1997) High Sensitivity Moire: Experimental Analysis for Mechanics and Materials, Springer-Verlag, New York.
  21. Shi, X.Q., Zhou, W., Pang, H.L. J., Wang, Z.P. (1999) Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy, Journal of Electronics Packaging, 121(3), pp.179∼ 185. https://doi.org/10.1115/1.2792681
  22. Wang, G.Z., Cheng, Z.N., Becker, K., Wilde, J.(2001) Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys, Journal of Electronic Packaging, 123(3), pp.247∼253. https://doi.org/10.1115/1.1371781
  23. Wiese, S., Meusel, E., Wolter, K.J. (2003) Microstructural Dependence of Constitutive Properties of Eutectic SnAg and SnAgCu Solders, Proceedings of 53th Electronics Components and Technology Conference, pp.197∼206.
  24. Yeo, A., Lee, C., Pang, J.H.L. (2006) Flip Chip Solder Reliability Analysis Using Viscoplastic and Elastic- Plastic-Creep Constitutive Models, IEEE Transactions on Components and Packaging Technologies, 29(2), pp.355∼363. https://doi.org/10.1109/TCAPT.2006.875893