• Title/Summary/Keyword: material efficiency

Search Result 4,429, Processing Time 0.027 seconds

PC1D Simulation for Optimization of High Efficiency Single Crystalline Silicon Solar Cell (고효율 단결정 실리콘 태양전지의 제작을 위한 PC1D 시뮬레이션 최적화)

  • Choi, Young-Jun;Moon, In-Yong;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.153-154
    • /
    • 2007
  • 결정질 실리콘 웨이퍼의 두께와 비저항은 태양전지의 효율을 결정하는 매우 중요한 요인이다. 높은 효율을 갖는 태양전지 설계를 위해 태양전지 시뮬레이터인 PC1D 프로그램을 이용하여 태양전지 웨이퍼 두께, 웨이퍼 비저항, 에미터 도핑 농도를 조절하였다. 최적화 결과, 베이스층 두께 $100{\mu}m$, 비저항 $0.1{\Omega}{\cdot}cm$, 에미터층 도핑 농도 $3{\cdot}10^{18}cm^{-3}$에서 $J_{sc}=39(mA/cm^2),\;V_{oc}=734(mV),\;P_{max}=3.17(W)$, FF=74, Efficiency=21.3%의 고효율을 얻을 수 있다. 본 연구를 통하여 태양전지 설계나 제조 시에 연구비를 절감할 수 있고 높은 효율의 태양전지로 접근할 수 있다.

  • PDF

Modeling of Mixed Phosphors in White Light Emitting Diode (백색 발광다이오드에서의 혼합 형광체 모델링)

  • Kim, Dowoo;Gong, Dayeong;Gong, Myeongkook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.567-574
    • /
    • 2013
  • An optical model is proposed in the white LED using phosphor and LED chip. In this paper a new model that describes the absorption rate and quantum efficiency with increasing the mixing ratio of phosphor in silicone, and the allotment of the phosphor absorption optical power in the several phosphor mixing in the silicone. Single phosphor in silicone from the optical measurement data before and after molding, the solution to get the blue optical power and the phosphor emission optical power is proposed. By these solution the absorption rate and the quantum efficiency was obtained. The model with single phosphor mixing in the silicone the validity was confirmed.

The characteristic of $CF_{4}$ decomposition for High density streamer (고밀도스트리머를 이용한 $CF_{4}$ 분해특성)

  • Song, W.S.;Park, J.Y.;Jung, J.G.;Kim, J.S.;Kim, T.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.133-137
    • /
    • 2002
  • In this paper, the $CF_{4}$ decomposition rate are investigated for a simulated three plasma reactors which are metal particle reactor, spiral wire reactor and reactor with porous dielectric as applied voltage. The $CF_{4}$ decomposition rate by plasma reactor with porous dielectric had a gain of 20~25[%] over that by plasma reactor with spiral wire or metal particle electrode. The $CF_{4}$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_{4}$ decomposition efficiency of metal particle reactor was about 80[%] at AC 24[kV]. However, decomposition efficiency is more than 90% in case of the reactor with porous dielectric. we think, the reactor with porous dielectric should be much better than other reactors for $CF_{4}$ decomposition.

  • PDF

A Study on Photoresist Strip Process using DIO3 (오존수를 이용한 감광막 제거 공정에 관한 연구)

  • Chai, Sang-Hoon;Son, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1143-1148
    • /
    • 2004
  • In this study, photoresist stripping in semiconductor or LCD (liquid crystal display) fabrication processes using DIO, was investigated. In order to obtain the high PR stripping efficiency of DIO. we have developed new ozone-generating system with high ozone concentration and ozone-resolving system with high contact ratio. In this study, we obtained ozone gas concentrations of 11 % by new ozone-generating system, ozone-resolving efficiency of 99.5 % and maximum solubility of 130 ppm in deionized water. We applied the newly designed equipments to photoresist stripping processes and obtained similar results to SPM(sulfuric-peroxide mixture) process characteristics.

Improved Efficiency and Lifetime for Organic Light-Emitting Devices Based on Mixed-Hole Transporting Layer (혼합된 정공 수송 층을 이용한 유기발광소자의 효율 및 수명 개선)

  • Seo, Ji-Hyun;Park, Jung-Hyun;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • Organic light-emitting devices (OLEDs) with the high efficiency and long lifetime are of growing interest in next-generation displays. Among the factors influencing OLEDs properties, one of unstable factor is $Alq_3$ cationic species caused by the excess holes resided in $Alq_3$ layer. Therefore, we suppressed the accumulation of excess holes by using the mixed-hole transporting layer (MHTL) of NPB and CBP in multilayer green OLEDs. The devices with MHTL showed improved characteristics in the luminance efficiency and lifetime. More characteristics and the carrier transport mechanism will be discussed.

  • PDF

The Electrical Characteristics of Spot Light Solar Cell Modules (집광형 태양전지 모듈의 전기적 특성에 관한 연구)

  • Kim, Beum-Jun;Kang, Ey-Goo;Lyu, Se-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.440-444
    • /
    • 2011
  • We have analyzed electrical characteristics of spot light solar cell modules and have completed fabrication of spot light solar cell modules. Before we test modules, we have carried about UV test of hologram. As a result of test, we have obtained 165% efficiency of hologram film. the other hand, we obtained 75% efficiency of general films. After we have fabricated solar modules and carried about field test, spot light solar cell modules with hologram have been investigated 17.3 A of Isc and 155.4 W of power.

Electrical and Optical Properties of Partially Doped Blue Phosphorescent OLEOs (부분 도핑을 이용한 청색 인광 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.512-515
    • /
    • 2009
  • We have fabricated blue phosphorescent organic light emitting diodes (PHOLEDs) using a 3,5'-N,N'-dicarbazole-benzene (mCP) host and iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$] picolinate (Flrpic) guest materials, The Flrpic was partially doped into the mCP host layer, for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs. The recombination of electrons and holes takes place inside the mCP layer adjacent to the mCP/hole blocking layer interface. The best current efficiency was obtained in a device with an emission layer structure of mCP (10 nm)/mCP:Flrpic (20 nm, 10%). The high current efficiency in this device was attributed to the confinement of Ffrpic triplet excitons by the undoped mCP layer with high triplet energy, which blocks diffusion of Ffrpic excitons to the adjacent hole transport layer with a lower triplet energy.

Comparison of Efficiency of Flash Memory Device Structure in Electro-Thermal Erasing Configuration (플래시메모리소자의 구조에 대한 열적 데이터 삭제 효율성 비교)

  • Kim, You-Jeong;Lee, Seung-Eun;Lee, Khwang-Sun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.452-458
    • /
    • 2022
  • The electro-thermal erasing (ETE) configuration utilizes Joule heating intentionally generated at word-line (WL). The elevated temperature by heat physically removes stored electrons permanently within a very short time. Though the ETE configuration is a promising next generation NAND flash memory candidate, a consideration of power efficiency and erasing speed with respect to device structure and its scaling has not yet been demonstrated. In this context, based on 3-dimensional (3-D) thermal simulations, this paper discusses the impact of device structure and scaling on ETE efficiency. The results are used to produce guidelines for ETEs that will have lower power consumption and faster speed.

Effect on the Thermal Treatment for Improving Efficiency in Silicon Heterojunction Solar Cells (이종접합 실리콘 태양전지의 효율 개선을 위한 열처리의 효과)

  • Hyeong Gi Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.439-444
    • /
    • 2024
  • This study investigates the post-thermal treatment effects on the efficiency of silicon heterojunction solar cells, specifically examining the influence of annealing on p-type microcrystalline silicon oxide and ITO thin films. By assessing changes in carrier concentration, mobility, resistivity, transmittance, and optical bandgap, we identified conditions that optimize these properties. Results reveal that appropriate annealing significantly enhances the fill factor and current density, leading to a notable improvement in overall solar cell efficiency. This research advances our understanding of thermal processing in silicon-based photovoltaics and provides valuable insights into the optimization of production techniques to maximize the performance of solar cells.

An Efficiency Improvement of the OLEDs due to the Thickness Variation on Hole-Injection Materials (정공주입물질 두께 변화에 따른 유기발광다이오드의 효율 개선)

  • Shin, Jong-Yeol;Guo, Yi-Wei;Kim, Tae-Wan;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • A new information society of late has arrived by the rapid development of various information & communications technologies. Accordingly, mobile devices which are light and thin, easy and convenient to carry on the market. Also, the requirements for the larger television sets such as fast response speed, low-cost electric power, wider visual angle display are sufficiently satisfied. The currently most widely studied display material, the Organic Light-emitting Diodes(OLEDs) overwhelms the Liquid Crystal Display(LCD), the main occupier of the market. This new material features a response speed of more than a thousand times faster, no need of backlight, a low driving voltage, and no limit of view angle. And the OLEDs has high luminance efficiency and excellent durability and environment resistance, quite different from the inorganic LED light source. The OLEDs with simple device structure and easy produce can be manufactured in various shapes such as a point light source, a linear light source, a surface light source. This will surely dominate the market for the next generation lighting and display device. The new display utilizes not the glass substrate but the plastic one, resulting in the thin and flexible substrate that can be curved and flattened out as needed. In this paper, OLEDs device was produced by changing thickness of Teflon-AF of hole injection material layer. And as for the electrical properties, the four layer device of ITO/TPD/$Alq_3$/BCP/LiF/Al and the five layer device of ITO/Teflon AF/TPD/$Alq_3$/BCP/Lif/Al were studied experimentally.