• Title/Summary/Keyword: material constants

Search Result 569, Processing Time 0.031 seconds

Microwave Absorbing Characteristic Improvement by Permittivity Control of Ferrite Composite Microwave Absorber (유전율제어에 의한 복합 Ferrite 전파흡수체의 성능향상)

  • 신재영;권형주;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.415-419
    • /
    • 1994
  • The material constants(the complex permeability and permittivity) of ferrite composite determine its microwave absorbing characteristics. Therefore, in order to improve the microwave absorbing characteristics, it is necessary to control the material constants of the ferrite composite. In this study, the method of improving microwave absorbing characteristics by control of permittivity of ferrite composite which has not satisfying matching condition in C-X band (4 GHz~12.4 GHz) was investigated. It was possible to control the permittivity by adjusting graphite loading ratio in the ferrite composite microwave absorber. It was also concluded that the control of permittivity of ferrite composite is effective method to improve the microwave absorbing characteristics.

  • PDF

THE ABSORPTION PROPERTIES OF Cu-Zn FERRITE/RUBBER COMPOSITE MICROWAVE ABSORBER WITH PZT ADDITIVE

  • Shin, Kwang-Ho;Geon, Sa-Gong
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.556-560
    • /
    • 1995
  • The absorption properties of Cu-Zn ferrite/rubber composite microwave absorbers with PZT(Lead Zirconate Titanate) additive were evaluated. The composite specimens have prepared by molding and curing the mixture of matrix rubber and Cu-Zn ferrite powders which are synthesized by the coprecipitation method using Fe Cl/sub 3/ .center dot. 6H/sub 2/O, CuCl/sub 2/ .center dot. 2H/sub 2/O and Zn Cl/sub 2/ as a starting raw materials. PZT is used as another filler particles to adjust the material constants of Cu-Zn ferrite/rubber composite specimens. We have found that the material constants of specimens could be controlled by various PZT mixing ratio. On the Cu-Zn ferrite/rubber composite specimens with PZT 10[wt%] additive, the reflection losses were larger than 30[dB] in the frequency range from 2.72 to 4.4[GHz]' by adjusing the thickness.

  • PDF

Elastic Properties of 2-Step Braided Composites (3차원 2-Step Braided 복합재료의 탄성 계수 예측)

  • Byun, Joon-Hyung
    • 연구논문집
    • /
    • s.23
    • /
    • pp.45-56
    • /
    • 1993
  • In order to acquire more comprehensive understanding of textile composites, the processing-microstructure-performance relationships for a variety of material systems, reinforcing schemes and processing technologies should be established. In this paper, emphasis is placed on the integrated analysis of three-dimensional (3-D) 2-step braided composites. The analysis includes the geometric model of unit cells, identification of key process parameters and processing windows due to limiting geometries of yarn jamming, and prediction of elastic constants of the composite. The coordinate transformation and averaging of stiffness and compliance constants are utilized in the prediction of elastic constants. Since there are several types of unit cells in the thickness and width directions of the composites, characterization of mechanical properties is based upon the macro-cell, which occupies the entire cross-section and the unit pitch length of the sample. The performance map demonstrates that a wide range of elastic properties can be achieved by varying the geometric and process parameters.

  • PDF

Determination of Optical Constants of Thin Films in Extreme Ultraviolet Wavelength Region by an Indirect Optical Method

  • Kang, Hee Young;Lim, Jai Dong;Peranantham, Pazhanisami;HwangBo, Chang Kwon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we propose a simple and indirect method to determine the optical constants of Mo and ITO thin films in the extreme ultraviolet (EUV) wavelength region by using X-ray reflectometry (XRR) and Rutherford backscattering spectrometry (RBS). Mo and ITO films were deposited on silicon substrates by using an RF magnetron sputtering method. The density and the composition of the deposited films were evaluated from the XRR and RBS analysis, respectively and then the optical constants of the Mo and ITO films were determined by an indirect optical method. The results suggest that the indirect method by using the XRR and RBS analysis will be useful to search for suitable high absorbing EUVL mask material quickly.

A promising new piezoelectric material -Langasite and its related compounds-

  • Kawanaka, Hiroyuki;Takeda, Hiroaki;Shimamura, Kiyoshi;Onozato, Norio;Fukuda, Tsuguo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.145-145
    • /
    • 1997
  • Recent progress of electric technology requires new piezoelectric crystals having superior properties such as zero temperature coefficients and large electromechanical coupling factors. We have developed a series of new leading chandidates, La$_3$Ga5SiO14(langasite, LGS), La3Nb0.5Ga5.5O14(LNG), La3Ta0.5O14(LTG), to satisfy those requirements. High quality LGS, LNG and LTG single crystals, with dimensions of 2 inches in diameter, were successfully grown by the Czochralski method at a pulling rate of 1mm/h. Since no variation of chemical composition was observed when whole melt in a crucible was crystallized, congruency of these compositions was confirmed. Physical constants such as elastic constants, dielectric constants and piezoelectric constants were measured. Filters and oscillators made of grown LGS, LNG and LTG single crystals showed superior properties such as three times wider passband than that of quartz, low insertion loss and easy processing, Langasite family crystals were shown to be superior materials to other known materials such as quartz, LiTaO$_3$, $\alpha$-AlPO$_4$ and Li$_2$B$_4$O7.

  • PDF

Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment

  • Mahesh, Vinyas;Kattimani, Subhaschandra;Harursampath, Dineshkumar;Trung, Nguyen-Thoi
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.267-292
    • /
    • 2019
  • The present article addresses the coupled free vibration problem of skew magneto-electro-elastic plates (SMEE) considering the temperature-moisture dependent material properties. The plate kinematics follows Reddy's higher order shear deformation theory. With the aid of finite element methods, the governing equations of motion are derived considering the Hamilton's principle and solved by adopting condensation technique. The influence of different temperature and moisture dependent empirical constants on the frequency response of SMEE plate has been assessed. In addition, the natural frequencies corresponding to various fields are evaluated and the effect of empirical constants on these coupled frequencies is determined. A detailed parametric study has been carried out to assess the individual effects of temperature and moisture dependent empirical constants along with their combined effect, aspect ratio, length-to-width ratio, stacking sequence and boundary conditions. The results reveal that the external environment as well as the geometrical skewness has a significant influence on the stiffness of the SMEE plates.

Prediction of elastic constants of Timoshenko rectangular beams using the first two bending modes

  • Chen, Hung-Liang (Roger);Leon, Guadalupe
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.657-668
    • /
    • 2021
  • In this study, a relationship between the resonance frequency ratio and Poisson's ratio was proposed that can be used to directly determine the elastic constants. Using this relationship, the frequency ratio between the 1st bending mode and 2nd bending mode for any rectangular Timoshenko beam can be directly estimated and used to determine the elastic constants efficiently. The exact solution of the Timoshenko beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The highest percent difference for the frequency ratio between the theoretical values and the estimated values for all the beam dimensions studied was less than 0.02%. The proposed equations were used to obtain the elastic constants of beams with different material properties and dimensions using the first two measured transverse bending frequencies. Results show that using the equations proposed in this study, the Young's modulus and Poisson's ratio of rectangular Timoshenko beams can be determined more efficiently and accurately than those obtained from industry standards such as ASTM E1876-15 without the need to test the torsional vibration.

The Finite Element Analysis for Calculations of Equivalent Elastic Constants Using the Homogenization Method (균질화기법과 유한요소법을 이용한 복합재료의 등가탄성계수 산정)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.51-61
    • /
    • 2000
  • This paper discusses the homogenization method to determine effective average elastic constants of a linear structure by considering its microstructure. A detailed description on the homogenization method is given for the linear elastic material and then the finite element approximation is performed for an investigation of elastic properties. An asymptotic expansion is carried out in the cross-section area, or in the unit cell. Two and three lay-up structures made up of individual isotropic constituents are chosen for numerical examples to check discrepancies between results generated by this theoretical development and the conventional approach. Asymptotic characteristics of the process in extracting the stiffness of structure locally formed by spatial repetitions yield underestimated values of stiffness. These discrepancies are detected by the asymptotic corrective term which is ascribed to considerations of microscopic perturbations and proved in the finite element formulation. The asymptotic analysis is the more reasonable in analysing the composite material, rather than the conventional approach to calculate the macroscopic average for elastic properties.

  • PDF