• Title/Summary/Keyword: material combination

Search Result 1,368, Processing Time 0.027 seconds

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.

Experimental Study on Wear Behavior of Material Pairs under Normal and Sliding Mixed Loading Conditions (무윤활 수직-수평 복합하중 조건에서 재료조합에 따른 마모특성 변화에 관한 실험적 연구)

  • Choi, Sung-Woo;Min, June-Kee;Jeong, Il-Wook;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.131-137
    • /
    • 2009
  • A pair of connectors for transferring torque is widely used in various types of a mechanical system. By the repetition of mechanical contact between a pair of connector, wear occurs easily. This kind of defect sometimes can cause a serious problem of health in case of the connector is used in a refrigerator. In this work, the material combination of connectors was experimentally studied to reduce the amount of wear; for the combination of connectors, various types of engineering materials including polyacetal, polycabonate, stainless steel (STS-304), NiP coated STS-304, and STS-310 were evaluated to check each wear behavior. Also an effective method of wear test was suggested for precise controlling of wear conditions such as contact area, contact force, and relative motion speed. From the test results, it was found out that a pair of polyacetal to STS-304 and STS-310 showed the lowest specific wear rates among other pairs.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Hybrid Passivation for a Flexible Organic Light Emitting Diode (다층 구조의 Hybrid flexible 박막 기술 연구)

  • Lee, Whee-Won;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

A Study on the Design Characteristics of Chanel Bags - focused on the collections from S/S 2001 to F/W 2008 -

  • Jang, Ji-Hye;Cho, Kyu-Wha
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.93-106
    • /
    • 2008
  • The purpose of this study is to analyze design characteristics of Chanel bags by its type and shape, material, color, pattern, decorations in order to give information about foundation of the development of Korean fashion brand handbags and help suggest predict future handbag trends. The methods of this study are documentary research and demonstrative research. For the documentary research, mainly previous researches and fashion related data were used. For the demonstrative research, the total of 288 design photos of Chanel bag were selected from 2001 S/S season to 2008 F/W season fashion collections of firstview.com., style.com., and mode et mode. The results of this study are as follows; First, type and shape of bags are clutch(30%), flap(25%), shoulder(25%), others(10%), tote(5%), hobo(5%). Second, the material data shows that leather(46%), mixed(18%), fabric(17%), synthetics (10%), patent(3%), others(3%), and suede(2%). Third, the patterns are geometrical(27%), solid(25%), combination(24%), symbolic(11%), abstract(11%), nature(2%). Fourth, the colors are largely monochrome(73%) and multicolor(27%). In case of monochrome, achromatic color(50%) is more than chromatic color(23%). The chromatic color is consisted of YR(9%), Y(9%), R(5%), RP(4%), PB(2%), P(1%), GY(0.5%), BG(0.5%). The multicolor is consisted of similar coloration(12%), contrast coloration(10%), and accent coloration(5%). Fifth, the decoration data shows that metallic(53%), plain(23%), combination(22%), and handcrafted(1%).

Utilization of Kota stone slurry powder and accelerators in concrete

  • Devi, Kiran;Saini, Babita;Aggarwal, Paratibha
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.189-201
    • /
    • 2019
  • Recent advances in the concrete technology are aiding in minimizing the use of conventional materials by substituting by-products of various industries and energy sources. A large amount of stone waste i.e., dust and slurry form both are being originated during natural stone processing and causing deadily effects on the environment. The disposal problem of stone waste can be resolved effectively by using waste in construction industries. In present work, Kota stone slurry powder, as a substitution of cement was used along with accelerators namely calcium nitrate and triethanolamine as additives, to study their impact on various properties of the concrete mixtures. Kota stone slurry powder (7.5%), calcium nitrate (1%) and triethanolamine (0.05%) were used separately as well in combination in different concrete mixtures. Mechanical Strength, modulus of elasticity and electrical resistivity of concrete specimens of different mix proportions under water curing were studied experimentally. The durability properties in terms of strength and electrical resistivity against sulphate and chloride solution attack at various curing ages were also studied experimentally. Results showed that accelerators and Kota stone slurry powder separately enhanced the mechanical strength and electrical resistivity; but, their combination decreased strength at all curing ages. The durability of concrete specimens was also affected under the exposure to chemical attack too. Kota stone slurry powder found to be the most effective material among all materials. Material characterization was also done to study the microstructural properties.

Developing an approach for fast estimation of range of ion in interaction with material using the Geant4 toolkit in combination with the neural network

  • Khalil Moshkbar-Bakhshayesh;Soroush Mohtashami
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4209-4214
    • /
    • 2022
  • Precise modelling of the interaction of ions with materials is important for many applications including material characterization, ion implantation in devices, thermonuclear fusion, hadron therapy, secondary particle production (e.g. neutron), etc. In this study, a new approach using the Geant4 toolkit in combination with the Bayesian regularization (BR) learning algorithm of the feed-forward neural network (FFNN) is developed to estimate the range of ions in materials accurately and quickly. The different incident ions at different energies are interacted with the target materials. The Geant4 is utilized to model the interactions and to calculate the range of the ions. Afterward, the appropriate architecture of the FFNN-BR with the relevant input features is utilized to learn the modelled ranges and to estimate the new ranges for the new cases. The notable achievements of the proposed approach are: 1- The range of ions in different materials is given as quickly as possible and the time required for estimating the ranges can be neglected (i.e. less than 0.01 s by a typical personal computer). 2- The proposed approach can generalize its ability for estimating the new untrained cases. 3- There is no need for a pre-made lookup table for the estimation of the range values.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

An Experimental Study on the Cement-Polymer Coatings Waterproofing Method Composed with Waste Tire Chip and Waste Glass powder (폐타이어와 폐유리 미분말을 소재로 한 무기질 탄성도막 방수공법에 관한 실험적 연구)

  • 김영삼;양승도;이성일;김윤욱;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.17-22
    • /
    • 2002
  • This Waterproofing Material which mainly consisted of 2 components of waste tire chip powder and waste glass powder. This Study is abut development of waterproofing Material, There is not tried in domestic. The most Motive of this Study wishes to recycle resources and get the economic performance for waterproofing Material The result of this Study is as followings. (1) Dense waterproofing floor is formed between waste tire chip by Coupling Agent(the most effective method to encourage adhesive strength and raise cohesion of material by combination.) (2) Expected to bring effect to shorten construction period at spot application potentially space-time in moisture aspect. Also, shortening effect of construction period and spot work are considered to be gone efficiently selecting pre-mix construction method. (3) This development Waterproofing material has elasticity that nature side compatibility of cement ingredient and plastic Emulsion have when utilize and constructs waite resources (being waste tire chip and waste glass powdered).

  • PDF

The Study of fabrication and characteristics of Inorganic EL Device with combination of high dielectric constant layer (고유전 유전막을 적용한 Inorganic EL Device 제작 및 특성 연구)

  • Lee, Gun-Sub;Ryu, Ji-Ho;An, Sung-Il;Lee, Seong-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.392-393
    • /
    • 2007
  • In this paper, we report the characteristics inorganic EL device with high dielectric constant materials of PMN, PZT. Fabricated EL device shows stable light emission even at 20kHz -400Volt without any break down failure. Brightness voltage curve of EL device is same with typical EL. As increasing applied voltage, the brightness increased linearly. From the results of Frequency and duty ratio variation, over 50% of brightness increment was seen. Luminous efficiency was increased upto 200V range and saturated over 200V by slow increasement of light emission. We got e bright stable emission of 1733 cd/m2 at the condition of Frequency 35 KHz, Duty 10%, 400V.

  • PDF