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a b s t r a c t

Precise modelling of the interaction of ions with materials is important for many applications including
material characterization, ion implantation in devices, thermonuclear fusion, hadron therapy, secondary
particle production (e.g. neutron), etc. In this study, a new approach using the Geant4 toolkit in com-
bination with the Bayesian regularization (BR) learning algorithm of the feed-forward neural network
(FFNN) is developed to estimate the range of ions in materials accurately and quickly. The different
incident ions at different energies are interacted with the target materials. The Geant4 is utilized to
model the interactions and to calculate the range of the ions. Afterward, the appropriate architecture of
the FFNN-BR with the relevant input features is utilized to learn the modelled ranges and to estimate the
new ranges for the new cases. The notable achievements of the proposed approach are: 1- The range of
ions in different materials is given as quickly as possible and the time required for estimating the ranges
can be neglected (i.e. less than 0.01 s by a typical personal computer). 2- The proposed approach can
generalize its ability for estimating the new untrained cases. 3- There is no need for a pre-made lookup
table for the estimation of the range values.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The interaction of ions with matter is important from the
viewpoint of many applications [1] including material character-
ization, ion implantation in devices, thermonuclear fusion, hadron
therapy, secondary particle production (e.g. neutron), etc.

The energy loss of ion during its transition in the material which
is due to elastic/inelastic collisions is given by Eq. (1) [2,3].
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(1)

where, dE/dr is energy loss per unit length of ion along its trajectory,
E is the energy of ion, and r is ion displacement. The energy loss due
to the radiation (i.e. bremsstrahlung and Cherenkov) is very small
and can be neglected. At low energies, scattering (i.e. Rutherford
scattering [4]) of the ion by the nuclear potential of the target
ar-Bakhshayesh).

by Elsevier Korea LLC. This is an
material is the reason of energy loss. The main mechanism of en-
ergy loss, at higher energies, is the inelastic interaction of incident
ion with the electrons of material causing ionization/excitation of
the target material atoms.

Up to now, different studies for modelling of ions interaction
with matter have been done. Examples are calculating stopping
power and range values of some human tissues [5], modelling of
neutron emission from the neutron generator [6], calculation of
stopping power ratio for proton therapy [7], and calculating the
distribution of deposited energy for simulation of ultra-fast
detection of proton and alpha particles [8].

In this study, a new approach based on the combination of the
Geant4 toolkit [9] and the feed-forward neural network with the
Bayesian regularization learning algorithm (FFNN-BR) is developed
to estimate the values of ion ranges in the materials accurately and
quickly. The developed approach using the Geant4 toolkit is able to
calculate the range of ions without any specific restriction on its
extension for new ions/energies/targets. The use of the FFNN-BR is
to speed up the calculations. In this study, we intend to train the
neural network only for ions with energies less than 2 MeV. First,
this cut-off energy is considered to examine the efficiency of the
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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proposed approach without need for the deep neural networks
(DNNs). Increasing the interaction energy increases the number of
patterns for training, which as a result, the network variables and
the number of layers should be increased to avoid underfitting. Eq.
(2) shows this criterion. Where, NP is the number of training pat-
terns, NV is the number network variables, NW and NB are the
number of weights and biases, respectively, NF is the number of
input features, NL1, NL2, NLf, and NO are the number of neurons in
hidden layer 1, hidden layer 2, final hidden layer, and output layer,
respectively. Since the main purpose of this paper is to develop a
method for calculating range of ions using the Geant4 and to
accelerate computations with the neural network, the purpose is
not to emphasize the capability of the DNNs. The further devel-
opment of the proposed approach to cover the full range of en-
ergies/ions/targets that require DNNs will be presented in the next
work. Secondly, many prevalent applications utilize low energy
ions and some definedmodels in PhysicsList of Geant4 (e.g., G4Bragg
model) are different for energies above 2 MeV.

NPyNV ¼ NW þ NB
NW ¼ NF � NL1 þ NL1 � NL2 þ :::þ NLf � NO
NB ¼ NL1 þ NL2 þ :::þ NLf þ NO

(2)

Outline of the present work is as follows. In Section 2, the
modelling of ions tracking in the materials using the Geant4 toolkit
is explained. The utilized neural network is explained in Section 3.
The proposed approach is illustrated in Section 4. The estimation
results of the ions range using the proposed approach is discussed
in Section 5. Section 6 gives the conclusion.
2. The modelling details of ions interaction with matter using
the Geant4 toolkit

The Geant4 ver10.1 is used to model the ion interaction with
matter. PhysicsList is an object in the Geant4 toolkit which collects
the particles, interactions, and secondary production threshold
needed for the simulation. An inherited class from G4UserPhysics-
List should be created in which the required processes and models
for the simulation are selected. In this study, the emstandard_opt4
constructor which uses the most accurate models for low energy
particles is employed. In this constructor, Urban and WntzelVI
models are applied to model multiple scattering of ions and pro-
tons, respectively. Moreover, the nuclear stopping phenomena is
considered using ICRU49 based models. For proton and alpha
ionization, the Bragg Ionization model is utilized. The ICRU73 based
G4IonParametrisedLoss is for ionization modelling of ions heavier
than Helium. However, in this study, this model is applied for
simulation of deuterons transport in the target and as will be
shown in the results, it shows good accuracy. The G4IonFluctuations
model including the fluctuation of ions in matter is also applied.
The G4UserTrackingAction class functions are used to calculate the
track length at each event. The final location of particles at each
event is stored on the x-axis as the range of it. The mean of the
range value is calculated using 105 events. In addition, in order to
compare the calculated values of different particles range more
accurately, the G4SteppingAction class functions are utilized at each
step. Since the aim of this study is modelling of the interaction of
low energy ionswithmatter, the inelastic, bremsstrahlung, and pair
production are not considered in the modelling.

In the performed modelling, the target geometry is considered
to be a 2 mm cube whose dimensions are far beyond the range of
low-energy ions. The ions are defined as a point source in the center
of the geometry with momentum on the x-axis direction.
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3. The utilized neural network for learning of ions range in
the materials

The FFNN is one of the best-known supervised neural networks
which is widely used in detection, identification, clustering, pa-
rameters regression, and values estimation [10,11]. In the FFNN,
training data are fed forward and are propagated backward to
change the weights and biases and to construct the mapping
function between input data and their related outputs. In order to
have an efficient FFNN, three main characteristics including the
selected features, the appropriate architecture of the network, and
the learning algorithm should be addressed carefully.

The relevant features increase the effectiveness and the accu-
racy of estimation and decrease the computational cost [12,13]. In
this study, the atomic mass number of incident ions, the energy of
incident ions, and the density of the target material are used as the
input features of the FFNN. It is important tomention, features such
as ionization energy, chemical composition, etc. may be helpful for
the estimation of the range values. In fact, there are many different
filter/wrapper/embedded and ensemble techniques for features
selection [14,15]. In addition, the DNN will also be needed to cover
the full range of energies/ions/targets. However, in this study, the
goal is to show the ability of the combination of the FFNN-BR and
the Geant4 toolkit for accurate and fast estimation of the ion ranges
in the materials. The development of a DNN with all relevant fea-
tures which is the objective of commercial softwares/computer
codes is out of the scope of this paper.

The number of hidden layers, the number of neurons, and the
distribution of neurons in hidden layers make the architecture of
the FFNN [16,17]. It is important to mention that there is no
analytical or deterministic method to obtain the most efficient ar-
chitecture and the heuristic techniques are employed to find the
appropriate one [18e20]. In this study, according to the universal
approximation theorem and because of the slow convergence rate
of neural networks with more than one hidden layer, a single
hidden layer neural network is used [21].

The learning algorithm of the FFNN is the third most important
characteristic. The gradient descent (GD) as the well-known
learning algorithm of the FFNN is given by Eq. (3). Where, CF is
the cost function given by Eq. (4), w is connecting weight of two
neurons of different layers, and a is the learning rate [16]. In Eq. (4),
TVi and OVi are the target value and the output value for i-th input
pattern. The slow convergence and overfitting are the main chal-
lenges of the GD.

wnew ¼wold þ a
vCF
vw

(3)

CF ¼
X
i

ðTVi � OViÞ2 (4)

In the Bayesian regularization (BR) learning algorithm, the CF is
redefined to overcome overfitting [22]. The CF of the BR is given by
Eq. (5) in which the weights are distributed according to the
Gaussian function and are updated by the Bayes’ rule which are
given by Eq. (6).

CFBR ¼ b
X
i

ðTVi � OViÞ2 þ g
X
j

w2
j (5)

PðwjID; b; gÞ¼ PðIDjw; bÞPðwj gÞP
PðIDjw; bÞPðwj gÞDw (6)

where, P is probability function, ID is the input-target data set, b and
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g are positive variables which are given by Eq. (7) and Eq. (8),
respectively.

g¼ NP
2
P
j
w2

j

�
wMAP

� (7)

b¼ TS� NP

2
P
i
ðTVi � OViÞ2

�
wMAP

� (8)

where MAP is maximum a posteriori, TS and NP are the number of
total samples and the network parameters, respectively [23]. The
schematic view of the applied FFNN-BR is presented in Fig. 1.
Fig. 2. The illustration of the proposed approach for estimation of ion range in
material.
4. The proposed approach

The proposed approach for estimating the ion ranges in the
matter using the combination of the Geant4 and the FFNN-BR is
illustrated in Fig. 2 performing its function according to the
following steps:

1 Modelling of the ion interaction with matter by the Geant4,
2 Calculation of ion ranges using the Geant4,
3 Training of the FFNN-BR using the selected features and the
calculated ion ranges,

4 Test of the FFNN-BR using the new values of the selected
features,

The estimated results by the FFNN-BR for each ion are compared
with the calculated results by the Geant4 using the average mean
relative error (AMRE) and the cumulative distribution function
(CDF) which are given by Eq. (9) and Eq. (10), respectively.

AMRE¼

PK
r¼1

PEn
E¼E1

jEstimated by FFNN�BRðEÞ�Calculated by ReferenceðEÞj
jCalculated by ReferenceðEÞj

n

K
(9)

where, Ei is the interaction energy of the incident ion with the
target matter and K is the number of estimations. In other words,
Fig. 1. The schematic view of the applied FFNN-BR.
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the range of each energy is estimated K times (i.e. using K number
of the trained neural networks) and the average of these estima-
tions is presented as the output. The reason for estimating more
than once is because the neural network may create a different
mapping function between input and target data in each training,
and therefore the different created mapping function gives
different estimation in the test process. In this manuscript, in order
to increase the reliability of the reported estimations, the average
estimation of K networks is presented. Therefore, in this paper, CDF
and AMRE are intended to make the reported results more reliable.

CDFðErrorÞ¼
XError
e¼0

PðeÞ (10)

where, P(e) is probability of estimation with error equal to e. The
CDF(Error)¼ I/100means that mean relative error (MRE) defined by
Eq. (11) in I out of 100 estimations is either less than or equal to
Error.

MRE¼

PEn
E¼E1

jEstimated by FFNN�BRðEÞ�Calculated by ReferenceðEÞj
jCalculated by ReferenceðEÞj

n
(11)



Fig. 3. The calculated values of alpha ion range in water using the Geant4 and the
SRIM.

Table 3
The deuteron ranges for the different targets by the proposed approach in com-
parison with the Geant4 toolkit and the SRIM code.

Target Energy
(keV)

SRIM results
(mm)

Geant4 results
(mm)

Estimation results
(mm)

Water 1000 15.58 15.84 15.61
500 6.15 6.21 6.12
200 2.48 2.47 2.45
100 1.48 1.45 1.39

CD2 1000 15.73 15.32 15.67
500 6.02 5.9 6.13
200 2.30 2.34 2.47
100 1.34 1.39 1.42

TiD2 1000 7.58 7.44 7.57
500 3.04 2.95 3.01
200 1.20 1.16 1.19
100 0.69 0.66 0.67

CT2 1000 15.68 15.24 15.58
500 6.00 5.89 6.00
200 2.29 2.34 2.37
100 1.33 1.40 1.35

TiT2 1000 7.63 7.44 7.51
500 3.06 2.95 3.02
200 1.21 1.16 1.17
100 0.69 0.66 0.67

Polyethylene 1000 15.33 15.22 15.56
500 5.85 5.88 6.09
200 2.23 2.33 2.43
100 1.29 1.38 1.37
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5. The results and discussion

The results of range calculation using the Geant4 show good
agreement with the SRIM code [24]. As an example, the range of
alpha in water is presented in Fig. 3. The modelling is done for ion
energies from 100 to 2000 keV. It should be noted that although
ICRU73 is intended for protons and ions heavier than helium, the
use of this model to calculate the deuteron range also showed
Table 1
The input features value.

Atomic mass
number

Incident energy Density (g/cm3)

Proton 1 100e2000 keV Water 1
Deuteron 2 e Polyethylene 0.97
Alpha 4 e CD2 1.062

CT2 1.196
TiD2 3.901
TiT2 4.052

Table 2
The training/test cases for the FFNN-BR.

Ion Proton Deuteron Alpha

The target material Water Water Water
The target material Polyethylene Polyethylene Polyethylene
The target material e CD2 e

The target material e CT2 e

The target material e TiT2 e

The target material e TiD2 e

Fig. 4. The estimation range of trained proton ion in Polyethylene in comparison with
the Geant4 toolkit and the SRIM code.
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acceptable results. The calculated values of ranges by the Geant4
are utilized to train/test the FFNN-BR.

The input features are the energy and atomic mass number of
incident ion as well as the density of the target matter which are
presented in Table 1. It is important to mention that the material
densities (i.e. CD2, CT2, TiD2, TiT2) are calculated by the method
described in reference [25]. The metal targets TiD2 and TiT2 and the
organic targets CD2 and CT2 are widely used in variety of neutron
generators.

The utilized network is a single hidden layer network with 20
neurons. The incident ions/target materials which are used to train/
test the FFNN-BR are given in Table 2. Seventy/thirty percent of data
by random selection are utilized for training/test of the FFNN-BR.
Therefore, there is no predefined regularity in selection of the
training patterns. The values of proton range in.

Polyethylene are given comparatively in Fig. 4. Moreover, the
range values of deuteron using the proposed approach in com-
parison with the Geant4 toolkit and the SRIM code for different
targets are given in Table 3. The results show good performance of
the proposed approach. In order to determine the generalization
Fig. 5. The estimation range of untrained alpha ion in water in comparison with the
Geant4 toolkit.



Table 4
The AMRE of estimating range values for energies 100e2000 keV (K ¼ 100).

Estimation results in comparison with Geant4 Estimation results in comparison with SRIM

Proton Deuteron Alpha Proton Deuteron Alpha

Polyethylene 0.0193 0.0134 0.0199 Polyethylene 0.0195 0.0208 0.0367
CT2 e 0.0246 e CT2 e 0.0331 e

TiD2 e 0.0644 e TiD2 e 0.0756 e

Water 0.0185 0.0175 0.0193 Water 0.0363 0.0210 0.0218
CD2 e 0.0241 e CD2 e 0.0270 e

TiT2 e 0.0725 e TiT2 e 0.0725 e

Fig. 6. The CDF of range value estimation for interaction of proton with water.

Fig. 7. The CDF of range value estimation for interaction of deuteron with CD2.
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ability of the proposed neural network, the training/test of the
neural network is done by the different materials. The presented
result in Fig. 5, as an example, show the acceptable performance of
the proposed approach for estimation of range of untrained alpha
ion.

The AMRE of estimating range values are presented in Table 4.
The CDF of the estimating range values of proton interaction with
Table 5
The estimating range values for energies 100e2000 keV (K ¼ 100 and CDF ¼ 0.50).

Estimation results in comparison with the Geant4

Proton Deuteron Alpha

Polyethylene 0.0160 0.0127 0.0153
CT2 e 0.0198 e

TiD2 e 0.0308 e

Water 0.0152 0.0173 0.0143
CD2 e 0.0224 e

TiT2 e 0.0447 e
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water and deuteron interactionwith CD2 are presented in Fig. 6 and
Fig. 7, respectively. The CDF of the estimating range values are
presented in Table 5 and Table 6. The CDF accompanied with AMRE
are reliable tools to reflect the performance of the proposed
approach. The notable advantages of the proposed approach are: 1-
The range of ions in different materials is given as quickly as
possible and the time needed to estimate the ranges can be
neglected (i.e. less than 0.01 s by a typical personal computer). 2-
The proposed approach can generalize its ability for estimating the
new untrained cases. 3- There is no need for a pre-made lookup
table for the estimation of the range values.
6. Conclusion

In this study, a new approach for estimation of ion range values
in interaction with materials is developed using a combination of
the Geant4 toolkit and the FFNN-BR neural network. The incident
ions interactions with materials are modelled by the Geant4. Sev-
enty/thirty percent of the calculated range values are utilized for
training/test of the FFNN-BR.

The results are compared with the SRIM code and show good
agreement. The notable achievements of the proposed approach
are: 1- The range of ions in different materials is given as quickly as
possible and the time needed to estimate the ranges can be
neglected (i.e. less than 0.01 s by a typical personal computer). 2-
The proposed approach can generalize its ability for estimating the
new untrained cases. 3- There is no need for a pre-made lookup
table for the estimation of the range values.

In this study, the neural network is trained only for ions with
energies less than 2 MeV. This makes possible to examine the ef-
ficiency of the proposed approach without need for the deep
learning. The further development of the proposed approach to
cover the full range of energies/ions/targets that require DNNs will
be presented in the next work.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
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Estimation results in comparison with the SRIM

Proton Deuteron Alpha

Polyethylene 0.0162 0.0197 0.0338
CT2 e 0.0294 e

TiD2 e 0.0438 e

Water 0.0331 0.0204 0.0171
CD2 e 0.0261 e

TiT2 e 0.0447 e



Table 6
The estimating range values for energies 100 to 2000 keV (K ¼ 100 and CDF ¼ 0.90).

Estimation results in comparison with the Geant4 Estimation results in comparison with the SRIM

Proton Deuteron Alpha Proton Deuteron Alpha

Polyethylene 0.0303 0.0198 0.0371 Polyethylene 0.0336 0.0283 0.0472
CT2 e 0.0342 e CT2 e 0.0429 e

TiD2 e 0.0910 e TiD2 e 0.1057 e

Water 0.0275 0.0210 0.0356 Water 0.0492 0.0249 0.0361
CD2 e 0.0350 e CD2 e 0.0336 e

TiT2 e 0.0971 e TiT2 e 0.0971 e
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