KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1708-1727
/
2021
In the advent of the twenty-first century, human beings began to closely interact with technology. Today, technology is developing, and as a result, the world wide web (www) has a very important place on the Internet and the significant task is fulfilled by Web services. A lot of Web services are available on the Internet and, therefore, it is difficult to find matching Web services among the available Web services. The recommendation systems can help in fixing this problem. In this paper, our observation was based on the recommended method such as the collaborative filtering (CF) technique which faces some failure from the data sparsity and the cold-start problems. To overcome these problems, we first applied an ontology-based clustering and then the k-nearest neighbor (KNN) algorithm for each separate cluster group that effectively increased the data density using the past user interests. Then, user ratings were predicted based on the model-based approach, such as singular value decomposition (SVD) and the predictions used for the recommendation. The evaluation results showed that our proposed approach has a less prediction error rate with high accuracy after analyzing the existing recommendation methods.
온라인 게임에서 다른 플레이어와의 상호작용은 플레이어의 만족도에 영향을 미친다. 따라서, 비슷한 수준의 플레이어를 매치시켜 원활한 상호작용을 도모하는 것은 플레이어의 게임 경험을 위해 중요하다. 그러나, 게임의 최종승패로만 플레이어의 평가점수를 증감시키는 현재의 평가 방식으로는 신규 및 복귀 플레이어의 원활한 매칭이 불가능하다. 본 연구에서는 스타크래프트II의 리플레이를 활용하여 매치메이킹 개선을 위한 기계학습 활용방안을 제시한다. 매치메이킹의 기준이 되는 플레이어의 MMR 점수를 예측하는 기계학습 모델을 생성하고 성능을 평가하였다. 모델의 오차는 리그 평균 MMR 점수 범위의 40.4% 수준으로, 제안된 방식을 통해서 플레이어를 실력과 근접한 리그에 즉시 배치할 수 있음을 확인하였다. 또한, 결과에 대한 플레이어의 수용도를 높일 수 있도록 예측의 근거를 도출하는 방안도 제시되었다.
Drug regeneration technology is an efficient strategy than the existing new drug development process, which requires large costs and time by using drugs that have already been proven safe. In this study, we recognize the importance of the new drug regeneration aspect of new drug development and research in predicting functional similarities through the basic molecular structure that forms drugs. We test four string-based algorithms by using SMILES data and searching for their similarities. And by using the ATC codes, pair them with functional similarities, which we compare and validate to select the optimal model. We confirmed that the higher the molecular structure similarity, the higher the ATC code matching rate. We suggest the possibility of additional potency of random drugs, which can be predicted through data that give information on drugs with high molecular similarities. This model has the advantage of being a great combination with additional data, so we look forward to using this model in future research.
스마트 기기 사용자의 성별 정보는 성공적인 개인화 서비스를 위해 중요하며, 스마트 기기로부터 수집된 멀티 모달 로그 데이터는 사용자의 성별 예측에 중요한 근거가 된다. 하지만 각 멀티 모달 데이터의 특성에 따라 다른 방식으로 성별 예측을 수행해야 한다. 따라서 본 연구에서는 스마트 기기로부터 발생한 로그 데이터 중 텍스트, 어플리케이션, 가속도 데이터에 기반한 각기 다른 분류기의 예측 결과를 다수결 방식으로 앙상블하여 최종 성별을 예측하는 기법을 제안한다. 텍스트 데이터를 이용한 분류기는 데이터 유출에 의한 사생활 침해 문제를 최소화하기 위해 웹 문서로부터 각 성별의 특징적 단어 집합을 도출하고 이를 기기로 전송하여 사용자의 기기 내에서 성별 분류를 수행한다. 어플리케이션 데이터에 기반한 분류기는 사용자가 실행한 어플리케이션들에 성별을 부여하고 높은 비율을 차지하는 성별로 사용자의 성별을 예측한다. 가속도 기반 분류기는 성별에 따른 사용자의 가속도 데이터 인스턴스를 학습한 SVM 모델을 사용하여 주어진 성별을 분류한다. 자체 제작한 안드로이드 어플리케이션을 통해 수집된 실제 스마트 기기 로그 데이터를 사용하여 제안하는 기법을 평가하였으며 그 결과 높은 예측 성능을 보였다.
본논문에서는 3차원 3D 얼굴 스캔 데이터와 사진 이미지를 이용하여 3D 얼굴 모델을 생성하고 향후의 얼굴을 예측하는 시스템 개발에 대해 기술한다. 본 시스템은 3차원 텍스처매핑, 얼굴 정의 파라미터 입력 도구, 3차원 예측 알고리즘으로 구성 되어 있다. 3차원 텍스처매핑 기능에서는 3D 스캐너로 획득한 얼굴 모델과 사진 이미지를 이용하여 특정 연령에서의 새로운 얼굴모델을 생성한다. 텍스처매핑은 3D 스캐너로부터 획득한 메쉬 데이터에 정면과 좌우 측면의 세 방향의 사진 이미지를 이용하여 매핑하였다. 얼굴 정의 파라미터 입력도구는 3차원 텍스처매핑에 필요한 사용자 인터페이스 도구로서, 얼굴 모델의 정확한 재질값을 얼굴 사진으로부터 얻기 워하여 사진과 3D 얼굴 모델의 특징점을 일치시키는데 사용된다. 본 연구에서는 한 얼굴의 향후 연령대에서의 얼굴 모델을 구하기 위하여 100여개의 얼굴 스캔 데이터베이스를 이용한 통계적 분석에 의해 재질값을 예측 계산하여 해상도 높은 재질값을 가지는 모든 연령대의 3D 얼굴모델을 구성하였다.
본 연구는 한국 프로배구 리그를 체계적으로 분석하고 대표적인 머신러닝 분류 방법을 활용하여 경기 결과를 예측하고자 한다. 이를 위해 2012/2013 시즌부터 2022/2023 시즌까지의 남자 프로배구와 여자 프로배구 리그 경기 데이터를 수집하였으며, 이 데이터는 경기 세부 내용을 상세하게 포함하고 있다. 데이터는 각 경기를 두 팀으로 분리한 경우와 홈팀을 기준으로 상대팀과의 성과 차이로 데이터를 가공한 경우로 두 가지 다른 데이터 구조를 모델에 적용했다. 이를 통해 남자 프로배구와 여자 프로배구 각각에 대해 총 4개의 예측 모형을 구축했다. 경기 종료 전에는 모형에서 사용하는 세부 변수 값들을 알 수 없기 때문에, 오늘 경기 직전까지의 3~4 경기의 결과를 전처리하여 이를 변수로 사용했다. 본 연구에서는 Decision Tree, Logistic Regression, Bagging, Random Forest, Xgboost, Adaboost, Light GBM 같은 다양한 머신러닝 기법을 분류에 활용하여, Random Forest를 사용한 모델이 가장 우수한 예측 성능을 보였다. 최종 선택한 모형에 대해 변수 중요도 그림과 부분 의존도 그림을 확인한 결과 성별과 데이터 구조에 따라 중요한 변수들이 다른 것으로 나타났지만, 공통적으로 세트 성공 수, 블로킹 득점, 범실 개수가 가장 중요한 변수임을 알 수 있었다. 본 승패 예측 모델은 사후적 예측이 아닌 경기 종료 전 사전 예측이 가능한 모형이라는 점에서 차별성을 가지며, 우리의 분석이 한국 프로배구 팀들에게 전략적 추론이 될 수 있을 것이라 기대한다.
석탄층 메탄가스(CBM) 저류층은 탄화과정 중에 탄리(cleat)가 물로 채워지게 되며, 탄리 내 물의 거동이 CBM 생산거동에 영향을 미칠 수 있다. 따라서 정확한 생산 자료 분석을 수행하기 위해서는 탄리 내 물 포화도가 CBM 생산에 미치는 영향을 고려해야 한다. 이에 본 연구에서는 서로 다른 물 포화도 조건을 갖는 CBM 저류층에 표준곡선(type curve) 분석을 수행하고 조건별 적합도를 평가하였다. CBM 생산 자료를 취득하기 위해 CMG사(社)의 GEM을 이용하여 물 완전포화, 중간포화, 불포화 상태의 저류층 모델을 구축하였으며, Fetkovich, Palacio-Blasingame(P-B), Agarwal-Gardner (A-G) 표준곡선 분석을 수행하였다. 그 결과, 불포화 CBM의 경우 Fetkovich 표준곡선이 후기 시간 영역에서 일치(matching)가 잘 이루어지지 않는 반면 A-G 표준곡선 모델에 우수한 일치를 나타내었다. 또한 중간 포화 CBM 생산 자료는 후기 시간 영역에서 표준곡선 모델 모두와 잘 일치되는 것을 확인하였다. 완전 포화 조건의 경우 최대 생산량(qpeak)이후 적은 양의 생산 자료만을 이용해서도 P-B와 A-G 표준곡선에 정확하게 일치되었으며, 이를 기반으로 특정 물 포화도 조건에서 각 표준곡선이 갖는 장 단점이 분석되었다. 따라서 CBM 개발 시 물 포화도 조건에 따라 적합한 표준곡선을 선택함으로써 CBM 저류층의 정확한 생산 자료 분석이 가능할 것으로 판단된다.
Journal of electromagnetic engineering and science
/
제9권2호
/
pp.85-97
/
2009
As operating frequency is raised and as more integration with active and passive elements is required, it becomes difficult to fabricate more than 120 ${\Omega}$ characteristic impedance of a mierostrip line. To solve this problem, an equivalent high impedance transmission-line section is suggested, which consists mainly of a pair of coupled-line sections with two shorts. However, it becomes a transmission-line section only when its electrical length is fixed and its coupling power is more than half. To have transmission-line characteristics(perfect matching), independently of coupling power and electrical length, two identical open stubs are added and conventional design equations of evenand odd-mode impedances are modified, based on the fact that the modified design equations have the linear combinations of conventional ones. The high impedance transmission-line section is a passive component and therefore should be perfectly matched, at least at a design center frequency. For this, two different solutions are derived for the added open stub and two types of high impedance transmission-line sections with 160 ${\Omega}$ characteristic impedance are simulated as the electrical lengths of the coupled-line sections are varied. The simulation results show that the determination of the available bandwidth location depends on which solution is chosen. As an application, branch-line hybrids with very weak coupling power are investigated, depending on where an isolated port is located, and two types of branch-line hybrids are derived for each case. To verify the derived branch-line hybrids, a microstrip branch-line hybrid with -15 dB coupling power, composed of two 90$^{\circ}$ and two 270$^{\circ}$ transmission-line sections, is fabricated on a substrate of ${\varepsilon}_r$= 3.4 and h=0.76 mm and measured. In this case, 276.7 ${\Omega}$ characteristic impedance is fabricated using the suggested high impedance transmission-line sections. The measured coupling power is -14.5 dB, isolation and matching is almost perfect at a design center frequency of 2 GHz, showing good agreement with the prediction.
비디오 시퀀스의 현재 블록의 모션 벡터와 이전 블록의 모션 백터는 시간적 상관성을 갖고 있다. 따라서 이전 프레임 블록들로부터 많은 정보를 얻을 수 있다면 현재 블록의 오션 추정에 대한 성능을 높일 수 있고 또한 탐색 횟수를 줄임으로써 계산 복잡도를 크게 줄일 수 있다. 본 논문에서는 이전 프레임 블록과 주위 블록들의 모션 벡터로부터 예측된 모션 정보를 구하여, 이를 탐색 원점으로 사용하지 않고, 탐색 구간에 따라 적응적으로 해당 초기점으로 탐색 원점을 이동시켜 고속 탐색 패턴을 이용하여 블록 정합을 수행하는 블록 정합 모션 추정 방식을 제안한다. 실험 결과 제안된 방식은 기존의 예측 탐색 방식들에 비해 PSNR 값에 있어서 평균적으로 0.33~0.37[dB] 개선되고 영상에 따라 최고 1.05[dB] 정도 우수한 결과를 나타내었다. 또한 탐색 횟수에서는 기존의 탐색 알고리즘보다 29~97%를 줄일 수 있었고, 정확한 모션 벡터를 찾는 비교에 있어서도 월등히 우수한 결과를 나타내었다. 제안된 방식은 정량적인 결과뿐만 아니라 부호화후 복호화한 영상의 화질에 있어서도 다른 고속 탐색 알고리즘보다 월등히 우수한 화질을 제공한다.
대부분의 임상시험에서 가장 대표적으로 사용되는 실험설계는 무작위화로, 치료 효과를 정확하게 추정하기 위해 이용된다. 그러나 무작위화가 이루어지지 않은 관찰연구의 경우 치료군과 대조군의 비교로 얻는 치료효과에는 환자 간의 특성 등 여러 조정되지 않은 차이로 인해 편향이 발생한다. 성향 점수 가중치는 이러한 문제점을 해결하기 위해 널리쓰이는 방법으로 치료 효과를 추정하는데에 있어 교란요인을 조정하여 편향을 최소화하도록 하는 방법이다. 성향 점수를 이용한 가중치 방법 중 가장 널리 알려진 역확률 가중치는 관찰된 공변량이 주어졌을 때 특정 치료에 할당될 조건부 확률의 역에 비례하는 가중치를 할당한다. 그러나 이 방법은 극단적인 성향 점수에 의해 종종 방해 받아 편향된 추정치와 과도한 분산을 초래한다는 점이 알려져있어 이러한 문제를 완화하기 위해 절사 역확률 가중치, 중복 가중치, 일치 가중치를 포함한 여러 가지 대안 방법이 제안되었다. 본 논문에서는 제한된 중복, 잘못 지정된 성향 점수 모델 및 예측과 반대되는 치료 등 다양한 문제상황에서 여러 성향 점수 가중치 방법의 성능을 비교하는 시뮬레이션 비교연구를 수행하였다. 비교연구의 결과 중복 가중치와 일치 가중치는 편향, 제곱근평균제곱오차 및 포함 확률 측면에서 역확률 가중치와 절사역확률 가중치에 비에 우월한 성능을 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.