• 제목/요약/키워드: matching prediction

검색결과 202건 처리시간 0.022초

Improving Web Service Recommendation using Clustering with K-NN and SVD Algorithms

  • Weerasinghe, Amith M.;Rupasingha, Rupasingha A.H.M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1708-1727
    • /
    • 2021
  • In the advent of the twenty-first century, human beings began to closely interact with technology. Today, technology is developing, and as a result, the world wide web (www) has a very important place on the Internet and the significant task is fulfilled by Web services. A lot of Web services are available on the Internet and, therefore, it is difficult to find matching Web services among the available Web services. The recommendation systems can help in fixing this problem. In this paper, our observation was based on the recommended method such as the collaborative filtering (CF) technique which faces some failure from the data sparsity and the cold-start problems. To overcome these problems, we first applied an ontology-based clustering and then the k-nearest neighbor (KNN) algorithm for each separate cluster group that effectively increased the data density using the past user interests. Then, user ratings were predicted based on the model-based approach, such as singular value decomposition (SVD) and the predictions used for the recommendation. The evaluation results showed that our proposed approach has a less prediction error rate with high accuracy after analyzing the existing recommendation methods.

기계학습을 활용한 온라인게임 매치메이킹 개선방안 (Improvement of online game matchmaking using machine learning)

  • 김용우;김영민
    • 한국게임학회 논문지
    • /
    • 제22권1호
    • /
    • pp.33-42
    • /
    • 2022
  • 온라인 게임에서 다른 플레이어와의 상호작용은 플레이어의 만족도에 영향을 미친다. 따라서, 비슷한 수준의 플레이어를 매치시켜 원활한 상호작용을 도모하는 것은 플레이어의 게임 경험을 위해 중요하다. 그러나, 게임의 최종승패로만 플레이어의 평가점수를 증감시키는 현재의 평가 방식으로는 신규 및 복귀 플레이어의 원활한 매칭이 불가능하다. 본 연구에서는 스타크래프트II의 리플레이를 활용하여 매치메이킹 개선을 위한 기계학습 활용방안을 제시한다. 매치메이킹의 기준이 되는 플레이어의 MMR 점수를 예측하는 기계학습 모델을 생성하고 성능을 평가하였다. 모델의 오차는 리그 평균 MMR 점수 범위의 40.4% 수준으로, 제안된 방식을 통해서 플레이어를 실력과 근접한 리그에 즉시 배치할 수 있음을 확인하였다. 또한, 결과에 대한 플레이어의 수용도를 높일 수 있도록 예측의 근거를 도출하는 방안도 제시되었다.

분자구조 유사도를 활용한 약물 효능 예측 알고리즘 연구 (A Study on the Prediction of Drug Efficacy by Using Molecular Structure)

  • 정화영;송창현;조혜연;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.230-240
    • /
    • 2022
  • Drug regeneration technology is an efficient strategy than the existing new drug development process, which requires large costs and time by using drugs that have already been proven safe. In this study, we recognize the importance of the new drug regeneration aspect of new drug development and research in predicting functional similarities through the basic molecular structure that forms drugs. We test four string-based algorithms by using SMILES data and searching for their similarities. And by using the ATC codes, pair them with functional similarities, which we compare and validate to select the optimal model. We confirmed that the higher the molecular structure similarity, the higher the ATC code matching rate. We suggest the possibility of additional potency of random drugs, which can be predicted through data that give information on drugs with high molecular similarities. This model has the advantage of being a great combination with additional data, so we look forward to using this model in future research.

스마트 기기의 멀티 모달 로그 데이터를 이용한 사용자 성별 예측 기법 연구 (A Study on Method for User Gender Prediction Using Multi-Modal Smart Device Log Data)

  • 김윤정;최예림;김소이;박규연;박종헌
    • 한국전자거래학회지
    • /
    • 제21권1호
    • /
    • pp.147-163
    • /
    • 2016
  • 스마트 기기 사용자의 성별 정보는 성공적인 개인화 서비스를 위해 중요하며, 스마트 기기로부터 수집된 멀티 모달 로그 데이터는 사용자의 성별 예측에 중요한 근거가 된다. 하지만 각 멀티 모달 데이터의 특성에 따라 다른 방식으로 성별 예측을 수행해야 한다. 따라서 본 연구에서는 스마트 기기로부터 발생한 로그 데이터 중 텍스트, 어플리케이션, 가속도 데이터에 기반한 각기 다른 분류기의 예측 결과를 다수결 방식으로 앙상블하여 최종 성별을 예측하는 기법을 제안한다. 텍스트 데이터를 이용한 분류기는 데이터 유출에 의한 사생활 침해 문제를 최소화하기 위해 웹 문서로부터 각 성별의 특징적 단어 집합을 도출하고 이를 기기로 전송하여 사용자의 기기 내에서 성별 분류를 수행한다. 어플리케이션 데이터에 기반한 분류기는 사용자가 실행한 어플리케이션들에 성별을 부여하고 높은 비율을 차지하는 성별로 사용자의 성별을 예측한다. 가속도 기반 분류기는 성별에 따른 사용자의 가속도 데이터 인스턴스를 학습한 SVM 모델을 사용하여 주어진 성별을 분류한다. 자체 제작한 안드로이드 어플리케이션을 통해 수집된 실제 스마트 기기 로그 데이터를 사용하여 제안하는 기법을 평가하였으며 그 결과 높은 예측 성능을 보였다.

3차원 얼굴 모델링과 예측 시스템 (A Three-Dimensional Facial Modeling and Prediction System)

  • 구본관;정철희;조선영;이명원
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권1호
    • /
    • pp.9-16
    • /
    • 2011
  • 본논문에서는 3차원 3D 얼굴 스캔 데이터와 사진 이미지를 이용하여 3D 얼굴 모델을 생성하고 향후의 얼굴을 예측하는 시스템 개발에 대해 기술한다. 본 시스템은 3차원 텍스처매핑, 얼굴 정의 파라미터 입력 도구, 3차원 예측 알고리즘으로 구성 되어 있다. 3차원 텍스처매핑 기능에서는 3D 스캐너로 획득한 얼굴 모델과 사진 이미지를 이용하여 특정 연령에서의 새로운 얼굴모델을 생성한다. 텍스처매핑은 3D 스캐너로부터 획득한 메쉬 데이터에 정면과 좌우 측면의 세 방향의 사진 이미지를 이용하여 매핑하였다. 얼굴 정의 파라미터 입력도구는 3차원 텍스처매핑에 필요한 사용자 인터페이스 도구로서, 얼굴 모델의 정확한 재질값을 얼굴 사진으로부터 얻기 워하여 사진과 3D 얼굴 모델의 특징점을 일치시키는데 사용된다. 본 연구에서는 한 얼굴의 향후 연령대에서의 얼굴 모델을 구하기 위하여 100여개의 얼굴 스캔 데이터베이스를 이용한 통계적 분석에 의해 재질값을 예측 계산하여 해상도 높은 재질값을 가지는 모든 연령대의 3D 얼굴모델을 구성하였다.

한국 프로배구 연맹의 경기 예측 및 영향요인 분석 (Matching prediction on Korean professional volleyball league)

  • 김희숙;이나경;이지윤;송종우
    • 응용통계연구
    • /
    • 제37권3호
    • /
    • pp.323-338
    • /
    • 2024
  • 본 연구는 한국 프로배구 리그를 체계적으로 분석하고 대표적인 머신러닝 분류 방법을 활용하여 경기 결과를 예측하고자 한다. 이를 위해 2012/2013 시즌부터 2022/2023 시즌까지의 남자 프로배구와 여자 프로배구 리그 경기 데이터를 수집하였으며, 이 데이터는 경기 세부 내용을 상세하게 포함하고 있다. 데이터는 각 경기를 두 팀으로 분리한 경우와 홈팀을 기준으로 상대팀과의 성과 차이로 데이터를 가공한 경우로 두 가지 다른 데이터 구조를 모델에 적용했다. 이를 통해 남자 프로배구와 여자 프로배구 각각에 대해 총 4개의 예측 모형을 구축했다. 경기 종료 전에는 모형에서 사용하는 세부 변수 값들을 알 수 없기 때문에, 오늘 경기 직전까지의 3~4 경기의 결과를 전처리하여 이를 변수로 사용했다. 본 연구에서는 Decision Tree, Logistic Regression, Bagging, Random Forest, Xgboost, Adaboost, Light GBM 같은 다양한 머신러닝 기법을 분류에 활용하여, Random Forest를 사용한 모델이 가장 우수한 예측 성능을 보였다. 최종 선택한 모형에 대해 변수 중요도 그림과 부분 의존도 그림을 확인한 결과 성별과 데이터 구조에 따라 중요한 변수들이 다른 것으로 나타났지만, 공통적으로 세트 성공 수, 블로킹 득점, 범실 개수가 가장 중요한 변수임을 알 수 있었다. 본 승패 예측 모델은 사후적 예측이 아닌 경기 종료 전 사전 예측이 가능한 모형이라는 점에서 차별성을 가지며, 우리의 분석이 한국 프로배구 팀들에게 전략적 추론이 될 수 있을 것이라 기대한다.

CBM 저류층의 생산성 예측을 위한 표준곡선 모델의 적합성 평가 연구 (A Study on the Conformity Assessment of Type Curve Models to Predict Production Performance in Coalbed Methane Reservoirs)

  • 김창균;이정환
    • 한국가스학회지
    • /
    • 제22권2호
    • /
    • pp.34-45
    • /
    • 2018
  • 석탄층 메탄가스(CBM) 저류층은 탄화과정 중에 탄리(cleat)가 물로 채워지게 되며, 탄리 내 물의 거동이 CBM 생산거동에 영향을 미칠 수 있다. 따라서 정확한 생산 자료 분석을 수행하기 위해서는 탄리 내 물 포화도가 CBM 생산에 미치는 영향을 고려해야 한다. 이에 본 연구에서는 서로 다른 물 포화도 조건을 갖는 CBM 저류층에 표준곡선(type curve) 분석을 수행하고 조건별 적합도를 평가하였다. CBM 생산 자료를 취득하기 위해 CMG사(社)의 GEM을 이용하여 물 완전포화, 중간포화, 불포화 상태의 저류층 모델을 구축하였으며, Fetkovich, Palacio-Blasingame(P-B), Agarwal-Gardner (A-G) 표준곡선 분석을 수행하였다. 그 결과, 불포화 CBM의 경우 Fetkovich 표준곡선이 후기 시간 영역에서 일치(matching)가 잘 이루어지지 않는 반면 A-G 표준곡선 모델에 우수한 일치를 나타내었다. 또한 중간 포화 CBM 생산 자료는 후기 시간 영역에서 표준곡선 모델 모두와 잘 일치되는 것을 확인하였다. 완전 포화 조건의 경우 최대 생산량(qpeak)이후 적은 양의 생산 자료만을 이용해서도 P-B와 A-G 표준곡선에 정확하게 일치되었으며, 이를 기반으로 특정 물 포화도 조건에서 각 표준곡선이 갖는 장 단점이 분석되었다. 따라서 CBM 개발 시 물 포화도 조건에 따라 적합한 표준곡선을 선택함으로써 CBM 저류층의 정확한 생산 자료 분석이 가능할 것으로 판단된다.

Equivalent Transmission-Line Sections for Very High Impedances and Their Application to Branch-Line Hybrids with Very Weak Coupling Power

  • Ahn, Hee-Ran;Kim, Bum-Man
    • Journal of electromagnetic engineering and science
    • /
    • 제9권2호
    • /
    • pp.85-97
    • /
    • 2009
  • As operating frequency is raised and as more integration with active and passive elements is required, it becomes difficult to fabricate more than 120 ${\Omega}$ characteristic impedance of a mierostrip line. To solve this problem, an equivalent high impedance transmission-line section is suggested, which consists mainly of a pair of coupled-line sections with two shorts. However, it becomes a transmission-line section only when its electrical length is fixed and its coupling power is more than half. To have transmission-line characteristics(perfect matching), independently of coupling power and electrical length, two identical open stubs are added and conventional design equations of evenand odd-mode impedances are modified, based on the fact that the modified design equations have the linear combinations of conventional ones. The high impedance transmission-line section is a passive component and therefore should be perfectly matched, at least at a design center frequency. For this, two different solutions are derived for the added open stub and two types of high impedance transmission-line sections with 160 ${\Omega}$ characteristic impedance are simulated as the electrical lengths of the coupled-line sections are varied. The simulation results show that the determination of the available bandwidth location depends on which solution is chosen. As an application, branch-line hybrids with very weak coupling power are investigated, depending on where an isolated port is located, and two types of branch-line hybrids are derived for each case. To verify the derived branch-line hybrids, a microstrip branch-line hybrid with -15 dB coupling power, composed of two 90$^{\circ}$ and two 270$^{\circ}$ transmission-line sections, is fabricated on a substrate of ${\varepsilon}_r$= 3.4 and h=0.76 mm and measured. In this case, 276.7 ${\Omega}$ characteristic impedance is fabricated using the suggested high impedance transmission-line sections. The measured coupling power is -14.5 dB, isolation and matching is almost perfect at a design center frequency of 2 GHz, showing good agreement with the prediction.

이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘 (A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame)

  • 곽성근;위영철;김하진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제9권3호
    • /
    • pp.23-29
    • /
    • 2003
  • 비디오 시퀀스의 현재 블록의 모션 벡터와 이전 블록의 모션 백터는 시간적 상관성을 갖고 있다. 따라서 이전 프레임 블록들로부터 많은 정보를 얻을 수 있다면 현재 블록의 오션 추정에 대한 성능을 높일 수 있고 또한 탐색 횟수를 줄임으로써 계산 복잡도를 크게 줄일 수 있다. 본 논문에서는 이전 프레임 블록과 주위 블록들의 모션 벡터로부터 예측된 모션 정보를 구하여, 이를 탐색 원점으로 사용하지 않고, 탐색 구간에 따라 적응적으로 해당 초기점으로 탐색 원점을 이동시켜 고속 탐색 패턴을 이용하여 블록 정합을 수행하는 블록 정합 모션 추정 방식을 제안한다. 실험 결과 제안된 방식은 기존의 예측 탐색 방식들에 비해 PSNR 값에 있어서 평균적으로 0.33~0.37[dB] 개선되고 영상에 따라 최고 1.05[dB] 정도 우수한 결과를 나타내었다. 또한 탐색 횟수에서는 기존의 탐색 알고리즘보다 29~97%를 줄일 수 있었고, 정확한 모션 벡터를 찾는 비교에 있어서도 월등히 우수한 결과를 나타내었다. 제안된 방식은 정량적인 결과뿐만 아니라 부호화후 복호화한 영상의 화질에 있어서도 다른 고속 탐색 알고리즘보다 월등히 우수한 화질을 제공한다.

  • PDF

임상에서 발생할 수 있는 문제 상황에서의 성향 점수 가중치 방법에 대한 비교 모의실험 연구 (A simulation study for various propensity score weighting methods in clinical problematic situations)

  • 정시성;민은정
    • 응용통계연구
    • /
    • 제36권5호
    • /
    • pp.381-397
    • /
    • 2023
  • 대부분의 임상시험에서 가장 대표적으로 사용되는 실험설계는 무작위화로, 치료 효과를 정확하게 추정하기 위해 이용된다. 그러나 무작위화가 이루어지지 않은 관찰연구의 경우 치료군과 대조군의 비교로 얻는 치료효과에는 환자 간의 특성 등 여러 조정되지 않은 차이로 인해 편향이 발생한다. 성향 점수 가중치는 이러한 문제점을 해결하기 위해 널리쓰이는 방법으로 치료 효과를 추정하는데에 있어 교란요인을 조정하여 편향을 최소화하도록 하는 방법이다. 성향 점수를 이용한 가중치 방법 중 가장 널리 알려진 역확률 가중치는 관찰된 공변량이 주어졌을 때 특정 치료에 할당될 조건부 확률의 역에 비례하는 가중치를 할당한다. 그러나 이 방법은 극단적인 성향 점수에 의해 종종 방해 받아 편향된 추정치와 과도한 분산을 초래한다는 점이 알려져있어 이러한 문제를 완화하기 위해 절사 역확률 가중치, 중복 가중치, 일치 가중치를 포함한 여러 가지 대안 방법이 제안되었다. 본 논문에서는 제한된 중복, 잘못 지정된 성향 점수 모델 및 예측과 반대되는 치료 등 다양한 문제상황에서 여러 성향 점수 가중치 방법의 성능을 비교하는 시뮬레이션 비교연구를 수행하였다. 비교연구의 결과 중복 가중치와 일치 가중치는 편향, 제곱근평균제곱오차 및 포함 확률 측면에서 역확률 가중치와 절사역확률 가중치에 비에 우월한 성능을 보임을 확인하였다.