DOI QR코드

DOI QR Code

A Study on the Prediction of Drug Efficacy by Using Molecular Structure

분자구조 유사도를 활용한 약물 효능 예측 알고리즘 연구

  • Jeong, Hwayoung (Department of Biomedical Engineering, Yonsei University) ;
  • Song, Changhyeon (Department of Biomedical Engineering, Yonsei University) ;
  • Cho, Hyeyoun (Department of Biomedical Engineering, Yonsei University) ;
  • Key, Jaehong (Department of Biomedical Engineering, Yonsei University)
  • Received : 2022.07.19
  • Accepted : 2022.08.10
  • Published : 2022.08.31

Abstract

Drug regeneration technology is an efficient strategy than the existing new drug development process, which requires large costs and time by using drugs that have already been proven safe. In this study, we recognize the importance of the new drug regeneration aspect of new drug development and research in predicting functional similarities through the basic molecular structure that forms drugs. We test four string-based algorithms by using SMILES data and searching for their similarities. And by using the ATC codes, pair them with functional similarities, which we compare and validate to select the optimal model. We confirmed that the higher the molecular structure similarity, the higher the ATC code matching rate. We suggest the possibility of additional potency of random drugs, which can be predicted through data that give information on drugs with high molecular similarities. This model has the advantage of being a great combination with additional data, so we look forward to using this model in future research.

Keywords

References

  1. Weininger, D. Smiles, a Chemical Language and Information-System .1. Introduction to Methodology and Encoding Rules. Journal of Chemical Information and Computer Sciences. 1988;28(1):31-36. https://doi.org/10.1021/ci00057a005
  2. Rajan K, Zielesny A, Steinbeck C. DECIMER: towards deep learning for chemical image recognition. J Cheminformatics. 2020;1291:1-9.
  3. Staker J, Marshall K, Abel R, McQuaw C. Molecular Structure Extraction from Documents Using Deep Learning. Journal of Chemical Information and Modeling. 2019;59(3):1017-1029. https://doi.org/10.1021/acs.jcim.8b00669
  4. Oprea T, Mestres J. Drug repurposing: far beyond new targets for old drugs. The AAPS journal. 2012;14(4):759-763. https://doi.org/10.1208/s12248-012-9390-1
  5. World Health Organization. WHO collaborating centre for drug statistics methodology. ATC/DDD index 2011. World Health Organization2011WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD index. 2011.
  6. Gasteiger J, Engel T. Chemoinformatics: a textbook; John Wiley & Sons. 2006.
  7. Law V, Knox C, Djoumbou Y, Jewison T, Guo A, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research. 2014;42(D1):D1091-1097. https://doi.org/10.1093/nar/gkt1068
  8. Marzal A, Vidal E. Computation of Normalized Edit Distance and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1993;15(9):926-932. https://doi.org/10.1109/34.232078
  9. Levenshtein V. Binary codes capable of correcting deletions, insertions, and reversals. InProceedings of the Soviet physics doklady. 1966;707-710.
  10. Kumar S, Rangan C. A Linear-Space Algorithm for the Lcs Problem. Acta Informatica. 1987;24(3):353-362. https://doi.org/10.1007/BF00265993
  11. Vidal D, Thormann M, Pons M. LINGO, an efficient holo-graphic text based method to calculate biophysical properties and intermolecular similarities. Journal of Chemical Information and modeling. 2005;45(2):386-393. https://doi.org/10.1021/ci0496797
  12. Ozturk H, Ozkirimli E, Ozgur A. A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction. BMC Bioinformatics. 2016;17(1):1-11.
  13. Bilenko M, Mooney R. Adaptive duplicate detection using learnable string similarity measures. In Proceedings of the Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003;39-48.
  14. Martin M, Givens C, Schriock E, Glass R, Dandekar P. The choice of a gonadotropin-releasing hormone analog influences outcome of in vitro fertilization treatment. American journal of obstetrics and gynecology. 1994;170(6);1629-1634; discussion 1632-1624.
  15. Hong KH, Choi WH, Ahn JY, Jung CH, Ha TY. Physicochemical properties of ethanol extracts and dietary fiber from Cassia tora L. seed. The Korean Journal of Food and Nutrition. 2012;25(3):612-619. https://doi.org/10.9799/KSFAN.2012.25.3.612
  16. Zhou P, Xie W, He S, Sun Y, Meng X, Sun G, Sun X. Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis. Cells. 2019;8(3):204.
  17. Chiasson J, Josse R, Leiter L, Mihic M, Nathan D, Palmason C, Cohen R, Wolever T. The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance. Diabetes Care. 1996;19(11):1190-1193. https://doi.org/10.2337/diacare.19.11.1190
  18. Zhao Q, Gao J, Li W, Cai D. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson's disease. Brain research. 2010;1346:224-236. https://doi.org/10.1016/j.brainres.2010.05.018
  19. Kwon H, Cho E, Jeon J, Lee Y, Kim D. Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment. Journal of Life Science. 2019;29(5):564-569. https://doi.org/10.5352/JLS.2019.29.5.564
  20. Kwon MJ, Nam TJ. Effects of Mesangi (Capsosiphon fulvecens) powder on lipid metabolism in high cholesterol fed rats. Journal of the Korean Society of Food Science and Nutrition. 2006;35(5):530-535. https://doi.org/10.3746/JKFN.2006.35.5.530
  21. Bachrach W, Hofmann A. Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis. Digestive diseases and sciences. 1982;27(8):737-761. https://doi.org/10.1007/BF01393771
  22. Thompson D, Morrice N, Grant L, Le Sommer S, Lees EK, Mody N, Wilson H, Delibegovic M. Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR-/-mouse model of atherosclerosis. Clinical Science. 2017;131(20):2489-2501. https://doi.org/10.1042/CS20171066
  23. Danzinger R, Hofmann A, Schoenfield L, Thistle, J. Dissolution of cholesterol gallstones by chenodeoxycholic acid. New England Journal of Medicine. 1972;286(1):1-8. https://doi.org/10.1056/NEJM197201062860101
  24. Kanes S, Colquhoun H, Gunduz-Bruce H, Raines S, Arnold R, Schacterle A, Doherty J, Epperson C, Deligiannidis K, Riesenberg R, et al. Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial. Lancet. 2017;390(10093):480-489. https://doi.org/10.1016/S0140-6736(17)31264-3
  25. Eslami G, Taheri S, Ayatollahi S, Malek G, Pourkaveh B. Comparison of Rosa Nutkana Sepal Extract with Synthetic Antibiotics for Treatment of Methicillin Resistant Staphylococcus Aureus Isolated from Patients with Sty. Archives of Clinical Infectious Diseases. 2011;6(suppl):7-11.
  26. Odou M, Muller C, Calvet L, Dubreuil L. In vitro activity against anaerobes of retapamulin, a new topical antibiotic for treatment of skin infections. Journal of antimicrobial chemotherapy. 2007;59(4):646-651. https://doi.org/10.1093/jac/dkm019
  27. Park SH, Kim JK, Park K. In Vitro Antimicrobial Activities of Fusidic Acid and Retapamulin against Mupirocin- and Methicillin-Resistant Staphylococcus aureus. Annals of Dermatology. 2015;27(5):551-556. https://doi.org/10.5021/ad.2015.27.5.551
  28. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov G, Doerr H, Cinatl J. Jr. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. Journal of medical chemistry. 2005;48(4):1256-1259. https://doi.org/10.1021/jm0493008
  29. Ivorra M, Paya M, Villar A. Hypoglycemic and insulin release effects of tormentic acid: a new hypoglycemic natural product. Planta Medica. 1988;54(4):282-285. https://doi.org/10.1055/s-2006-962433