• 제목/요약/키워드: matching elasticity

검색결과 11건 처리시간 0.021초

내생성 문제를 완화한 한국의 매칭함수 추정 (Estimation of the Matching Function in Korea by Mitigating Endogeneity Problems)

  • 김지운
    • 노동경제논집
    • /
    • 제43권2호
    • /
    • pp.109-133
    • /
    • 2020
  • 본 논문에서는 Borowczyk-Martins et al.(2013)의 방식을 통해 내생성 문제를 완화하여 한국의 매칭함수를 추정하였다. 관측되지 않는 매칭 효율성을 ARMA(p,q) 과정으로 근사하고 일반적률(GMM) 추정법으로 내생성을 통제하였다. 2009년 6월부터 2019년 12월까지의 경제활동인구조사와 사업체노동력조사의 월 자료를 사용하여 한국의 매칭함수를 추정한 결과, 빈 일자리에 대한 채용의 탄력성을 나타내는 매칭 탄력성은 0.859로 나타났다. 정부의 직접 일자리 제공이 많았던 2019년 표본을 제외하고 추정한 경우 매칭 탄력성은 0.755로 낮아졌으나, 여전히 다른 국가의 매칭 탄력성보다는 높게 나타났다.

  • PDF

변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브 (High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring)

  • 김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Analysis of system dynamic influences in robotic actuators with variable stiffness

  • Beckerle, Philipp;Wojtusch, Janis;Rinderknecht, Stephan;von Stryk, Oskar
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.711-730
    • /
    • 2014
  • In this paper the system dynamic influences in actuators with variable stiffness as contemporary used in robotics for safety and efficiency reasons are investigated. Therefore, different configurations of serial and parallel elasticities are modeled by dynamic equations and linearized transfer functions. The latter ones are used to identify the characteristic behavior of the different systems and to study the effect of the different elasticities. As such actuation concepts are often used to reach energy-efficient operation, a power consumption analysis of the configurations is performed. From the comparison of this with the system dynamics, strategies to select and control stiffness are derived. Those are based on matching the natural frequencies or antiresonance modes of the actuation system to the frequency of the trajectory. Results show that exclusive serial and parallel elasticity can minimize power consumption when tuning the system to the natural frequencies. Antiresonance modes are an additional possibility for stiffness control in the series elastic setup. Configurations combining both types of elasticities do not provide further advantages regarding power reduction but an input parallel elasticity might enable for more versatile stiffness selection. Yet, design and control effort increase in such solutions. Topologies incorporating output parallel elasticity showed not to be beneficial in the chosen example but might do so in specific applications.

삭편판과 단판 또는 합판을 구성 접착한 콤플라이 복합재에 관한 연구 (Studies on Comply-composites bonded with Particleboard and Veneer or Plywood)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.86-101
    • /
    • 1990
  • The primary objective of this research was to investigate the strength properties of Comply, a composite panel. fabricated with particle board as core material and veneer or plywood as face and back. 20types of comply composites were manufactured according to the four specific gravity levels(0.5, 0.6, 0.7 or 0.8) of particleboard core and three veneer or two plywood thicknesses for face and back. They were tested and compared with matching particleboard (control) on moisture content. specific gravity, bending properties(MOE, MOR SPL). nail resistance and internal bond strength. The obtained results were summarized as follows: The increasing effect of modulus of elasticity was shown by the increase of face and back veneer or plywood thickness. The modulus of rupture and stress at proportional limit of the comply composites bonded with 3mm thick veneers or 3mm thick plywood face and back were higher than 2mm thick veneer or 2mm thick plywood as face and back. Both of modulus of rupture and stress at proportional limit on bending of Comply were higher than those of control board. Also the modulus of elasticity of Comply showed much higher than that of control board. The nail resistance of Comply, composed of plywood as face and back was higher than that of veneer. The nail resistance of control board was higher than that of Comply at Sp.Gr 0.7 and 0.8 core boards. Internal bond of Comply, composed of 1mm and 2mm thick veneer as face and back was higher than that of 3mm thick veneer. The increasing effect of modulus of elasticity was shown by the increase of shelling ratio in Comply composed of veneer and plywood as face and back. The modulus of rupture was increased by the increment of shellmg ratio in Compiy, composed of plywood as face and back. The modulus of elasticity and modulus of. rupture of comply were higher than those of particleboard(control) in effect of shelling ratio. Therefore it was concluded that the mechanical property values of Comply were clearly greater than those of particleboard(control).

  • PDF

Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis

  • Majeed, Samadar S.;Haido, James H.;Atrushi, Dawood Sulaiman;Al-Kamaki, Yaman;Dinkha, Youkhanna Zayia;Saadullah, Shireen T.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.451-463
    • /
    • 2021
  • Inorganic basalt fiber (BF) is a novel sort of commercial concrete fiber which is made with basalt rocks. Previous studies have not sufficiently handled the behavior of self-compacted concrete, at elevated temperature, containing basalt fiber. Present endeavor covers experimental work to examine the characteristics of this material at high temperature considering different fiber content and applied temperature. Different tests were carried out to measure the mechanical properties such as compressive strength (fc), modulus of elasticity (E), Poisson's ratio, splitting tensile strength (fsplit), flexural strength (fflex), and slant shear strength (fslant) of HSC and hybrid concrete. Gene expression programming (GEP) was employed to propose new constitutive relationships depending on experimental data. It was noticed from the testing records that there is no remarkable effect of BF on the Poisson's ratio and modulus of elasticity of self-compacted concrete. The flexural strength of basalt fiber self-compacted concrete was not sensitive to temperature in comparison to other mechanical properties of concrete. Fiber volume fraction of 0.25% was found to be the optimum to some extend according to degradation of strength. The proposed GEP models were in good matching with the experimental results.

판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법 (Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates)

  • 이태훈;김정석;장경영
    • 비파괴검사학회지
    • /
    • 제30권5호
    • /
    • pp.458-463
    • /
    • 2010
  • 음향 비선형성은 재료 물성의 미세한 변화에 민감하기 때문에, 이를 측정하는 비선형 초음파 기술은 재료의 열화나 피로를 평가할 수 있는 기법으로 연구되어 왔다. 하지만 벌크파를 이용하는 일반적인 비선형 초음파 기법은 얇은 판재에 적용하는 것에는 여러 한계가 있다. 이와 같은 경우에는 비선형 Lamb 파의 사용을 생각할 수 있지만, Lamb 파는 벌크파와 매우 다른 전파 특성을 가지고 있어 그 비선형 특성에 대한 별도의 연구를 필요로 한다. 이를 위해 본 연구에서는 Lamb 파에서 비선형성에 의해 전파하면서 누적 성장할 수 있는 2차 고조파 모드의 발생 조건을 분석하였으며, 그 결과 네 가지 조건, 즉 (1) phase matching, (2) non-zero power flux, (3) group velocity matching, (4) non-zero out-of-plane displacement 를 제시하였다. 그리고 제시된 조건으로 알루미늄 판재에 대책 실험한 결과 이론 예측과 동일하게 전파 거리에 따라 2차 고조파 성분의 크기와 비선형 파라미터가 증가하였고, Al6061-T6 과 Al1100-H14에서 측정된 상대적인 비선형 파라미터의 비율이 이론적인 비율과 근접함을 보였다.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.637-650
    • /
    • 2021
  • The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

현대 섬유패션브랜드에 나타난 매스티지 현상 (Masstige Phenomenon Appeared on Contemporary Textiles & Fashion Brand)

  • 박옥미;이수철
    • 한국패션뷰티학회지
    • /
    • 제4권1호
    • /
    • pp.4-11
    • /
    • 2006
  • Masstige goods aimed consumers who want the fame and the emotional contents with reasonable price are presented overall and around the life style, from all the fashion items like bag and apparel to car, electric household, food, sports goods, furniture, toys, pets and performance of art, etc. Masstige casual, essentially different from the passed casuals which emphasized only price strategy, appeals to teenagers and young of twenties with a definite brand concept. Therefore masstige casual might be separated from business casual of a target aged thirties. Established celebrity brands have launched masstige brands matching the popularization of prestige goods. Armani Exchange from Armani, Marc by Marc Jacobs from Louis Vuitton are representative ones. DKNY from Donna Karen, MiuMiu from Prada, Paul smith Pink from Paul Smith can be added. These are relatively inexpensive, however the quality, design and shop's atmosphere are more exclusive than general brands. Consumers are over middle class and have a pride and fidelity to those brands. Leading Masstige trend, new luxury brands put the importance to the quality and aims middle class. To succeed in this field, companies should know exactly what consumers want, considering not only functional aspect but also emotional pleasure. Even though masstige has a weakness in pricing, it has to keep brand's proper benefit. Its price range could be wide to be in great demand but has to have elasticity and not to be expanded too much. Masstige industry should do its best not to damage original brand's identity. Forming family brand, like Armani made Georgic Armani, Emporio Armani and Armani exchange, system of parent brand and sub brands would be recommendable. From the launching time, masstige needs the effects to create a sensation and bring it into vogue and offer emotional value to the consumers.

  • PDF