• 제목/요약/키워드: master-slave system

Search Result 352, Processing Time 0.029 seconds

Development of Refer-container Remote Monitoring System for Ship using RF Module (RF 모듈 방식의 선박용 냉동 컨테이너 원격 감시시스템 개발)

  • Yang, Hyun-Suk;Lim, Hyun-Jung;Kim, Kun-Woo;Kwon, Yeong-Gwal;Kim, Dong-Mook;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.425-432
    • /
    • 2007
  • This paper describes a development of ship's refer-container remote monitoring system(RRMS). This system consists of Master, repeater with a switched mode power supply(SMPS) and slave terminal. Slave terminal is composed of wireless MODEM and microprocessor part, checks its conditions like temperature. humidity & etc through the interrogate port(IP) of refer-container. and transmits their data to master. Repeater's role is that connect so that signal which is transmitted from Slave Terminal by Master may not receive electric wave interference by container boxes. We verify the effectiveness of proposed system through the experimental works in container yard and ship.

Neural network-based control for uneven delay-time systems (인공신경망을 이용한 지연시간이 일정치 않은 시스템의 제어)

  • 이미경;이지홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.446-449
    • /
    • 1997
  • We propose a control law in discrete time domain of the bilateral feedback teleoperation system using neural network and the reference model type of adaptive control. Different from traditional teleoperation systems, the transmission time delay irregularly changes. The proposed control method controls master and slave systems through identification of master and slave models using neural networks.

  • PDF

Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System (Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계)

  • Lee, Woon-Kyu;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.

Predictive Control of Bilateral Teleoperation with Short Time Delay (시간 지연이 있는 양방향 원격제어 시스템의 예측 제어)

  • Im, Heung-Jae;Chung, Wan-Kyun;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • In the teleoperation system, force and velocity signals are communicated between a master and a slave robot. The addition of force feedback to a teleoperation system benefits the operator by providing more information to perform given tasks especially for tasks requiring contact with environment. When the master and slave arms are located in different places, time delay is unavoidable and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The control scheme proposed in this paper is based on the estimator with virtual master model. Delayed signal from the master robot can be replaced by the estimated signal with the virtual master model. This control scheme makes the teleoperation system stable for the given time delay while the conventional scheme is not. This new control scheme is verified through numerical simulations and an experiments using the dual axis testbed of the teleoperation system.

  • PDF

Implementation of Home Service Robot System consisting of Object Oriented Slave Robots (객체 지향적 슬레이브 로봇들로 구성된 홈서비스 로봇 시스템의 구현)

  • Ko, Chang-Gun;Ko, Dae-Gun;Kwan, Hye-Jin;Park, Jung-Il;Lee, Suk-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.337-339
    • /
    • 2007
  • This paper proposes a new paradigm for cooperation of multi-robot system for home service. For localization of each robot. the master robot collects information of location of each robot based on communication of RFID tag on the floor and RFID reader attached on the bottom of the robot. The Master robot communicates with slave robots via wireless LAN to check the motion of robots and command to them based on the information from slave robots. The operator may send command to slave robots based on the HRI(Human-Robot Interaction) screened on masted robot using information from slave robots. The cooperation of multiple robots will enhance the performance comparing with single robot.

  • PDF

Verification of System using Master-Slave Structure (Master-Slave 기법을 적용한 System Operation의 동작 검증)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.199-202
    • /
    • 2009
  • Scan design is currently the most widely used structured Design For Testability approach. In scan design, all storage elements are replaced with scan cells, which are then configured as one or more shift registers(also called scan chains) during the shift operation. As a result, all inputs to the combinational logic, including those driven by scan cells, can be controlled and all outputs from the combinational logic, including those driving scan cells, can be observed. The scan inserted design, called scan design, is operated in three modes: normal mode, shift mode, and capture mode. Circuit operations with associated clock cycles conducted in these three modes are referred to as normal operation, shift operation, and capture operation, respectively. In spite of these, scan design methodology has defects. They are power dissipation problem and test time during test application. We propose a new methodology about scan shift clock operation and present low power scan design and short test time.

Force-Reflected Teleoperation of Grasper for Minimum Invasive Surgery (최소침습수술용 Grasper의 힘반영 원격제어)

  • Yoon, Byoung-Soung;Jang, Dae-Jin;Park, Tae-Wook;Yang, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1470-1475
    • /
    • 2003
  • The senses that a doctor can feel is limited in MIS(Minimal Invasive Surgery) which guarantees the fast recovery of the patient and minimal incision for going in and out of instruments through the tissue of the patient. In particular, the surgical robotic teleoperation system developed recently serves with only the information of eyesight and auditory sense. Therefore force-reflection is the most demanded element of the senses in manipulating surgical instruments. In this paper, we designed the Master system and the 2 D.O.F grasper for the robotic teleoperation system(Slave) that has two force sensors on the grasper. Particularly, we focused on serve to master's handle with the contact force between tissue and the grasper of Slave.

  • PDF

Optimal Static Output Feedback Control of Tendon Driven Master-Slave Manipulator (텐던 구동 마스터-슬레이브 조작기 최적 정적 출력 되먹임 제어)

  • Kang, Min-Sig;Lee, Jong-Kwang;Yoon, Ji-Sup;Park, Byung-Suk;Kim, Ki-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1039-1046
    • /
    • 2009
  • In this work, a bilateral control for a master-slave manipulator system which will be used for handling objects contaminated by radioactivity has been addressed. The links of manipulators are driven independently by individual motors installed on the base and the driving torque is transmitted through pre-tensioned tendons. The measurable variables are the positions and rates of master/slave motors. In the consideration of the flexibility of the tendon and available measurements for control, we proposed an optimal static output feedback control for possible bilateral control architecture. By using modal analysis, the system model is reduced to guarantee the detectability which is a necessity for the static output feedback control design. Based on the reduced model, the control gains are determined to attenuate vibration in the sense of optimality. The feasibility of the proposed control design was verified along with some simulation results.

Simulation of ULP Self-Sustaining Sensor Node System (ULP 자기유지 센서노드 시스템의 시뮬레이션)

  • Kim, Yun-Ho;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1435-1443
    • /
    • 2009
  • In this paper, an energy harvesting sensor network system is modeled and simulated by using the DEVS (Discrete Event System Specification) formalism. The system is composed of a sink (master) node, which is battery or mains powered, and a set of sensor (slave) nodes, each of which harvests ambient energy and converts it into electrical energy. For simulation, (i) the behavior of energy harvesting and storing circuits of the slave node is partitioned into a set of piecewise continuous segments and then each segment is represented as a discrete state; (ii) the interaction among the master node and components of the slave node is investigated preciously; and (iii) the investigated result is modeled and simulated by using the DEVS formalism.

Development of Master-Slave Type Tele-Operation Control Robotic System for Arrhythmia Ablation (부정맥 시술을 위한 마스터-슬레이브 원격제어·로봇 시스템 개발)

  • Moon, Youngjin;Park, Sang Hoon;Hu, Zhenkai;Choi, Jaesoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.585-589
    • /
    • 2016
  • Recently, the robotic assist system for cardiovascular intervention gets continuously growing interest. The robotic cardiovascular intervention systems are largely two folds, systems for cardiac ablation procedure assist and systems for vascular intervention assist. For the systems, the clinician controls the catheter inserted through blood vessel to the heart via a master console or master manipulator. Most of the current master manipulators have structure of joystick-like pivoting 2 degree of freedom (DOF) handle in the core, which is used in parallel with other sliding switches and input devices. It however is desirable to have customized and optimized design manipulator that can provide clinician with intuitive control of the catheter motion fully utilizing the advantage of the use of robotic structure. A 6 DOF kinematic mechanism that can capture the motion control intention of the clinician in translational 3 DOF and rotational 3 DOF is proposed in this paper. Also, a master-slave motion relationship specially designed for the cardiac catheter manipulation motion is proposed and implemented in an experimental prototype. Design revision for implementation of more efficient motion and experiment in combination with an experimental slave robot system for catheter manipulation are underway.