• Title/Summary/Keyword: mass-scale production

Search Result 243, Processing Time 0.03 seconds

Lab-scale experimental setup to evaluate the performance of band driers (통기밴드식 건조기의 성능 평가 실험 장치)

  • Seongmin, Park;Sang Hyun, Oh;Sung Il, Kim;Wonjung, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.36-41
    • /
    • 2022
  • Drying process is involved in the production of various products including food, textiles, paper, pharmaceuticals, and batteries. Phase change of liquid to vapor generally requires enormous thermal energy, so in order to save energy, it is advantageous to develop an appropriate drier and use it under appropriate operating conditions, depending on the characteristics of materials. However, due to the complex, multiscale heat and mass transfer occurring during drying processes, predictions of appropriate drying conditions before actual operation are not easily achieved, leading to challenges in designing driers. Here, we developed a lab-scale experimental setup to evaluate the performance of band dries. The experimental setup was used to measure the moisture content and temperature change in the materials being dried in a belt dryer. Experimental results obtained using our lab-scale setup allow us to predict the performance of a full-scale band drier, thus suggesting a practical framework for predicting the drying process of various materials and developing band driers.

Candida magnoliae SR101에 의한 Erythritol의 생산에서 산업용 질소원의 선정 및 최척화

  • Park, Seon-Yeong;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.351-354
    • /
    • 2001
  • In this experiment, we tested various nitrogen sources and then culture condition was optimized for industrial applications. The batch culture of Candida magnoliae SR101 grown in a defined medium supplemented with light steep water (LSW) as a sole nitrogen source showed a relatively high yield of erythritol production (53%), which was slightly higher than that using yeast extract as a nitrogen source, while the productivity and cell mass were maintained at similar levels. For the optimization of culture condition, the batch culture was performed. When the concentration of LSW was 65 mL/L in the defined medium containing 250 g/L of glucose, the concentration, yield and productivity of erythritol were 110 g/L, 44%, and 0.66 g/L-hr, respectively. The high yield and comparable productivity obtained with a cheap nitrogen source could be expected as a basis for the mass production of erythritol in the industrial scale.

  • PDF

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

Use of Sucrose-Agar Globule with Root Exudates for Mass Production of Vesicular Arbuscular Mycorrhizal Fungi

  • Thangaswamy Selvaraj;Kim, Hoon
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.60-63
    • /
    • 2004
  • A sucrose-agar globule (SAG) was newly introduced to increase production of the vesicular arbuscular mycorrhizal (VAM) fungal spores, Gigaspora gigantea and Glomus fasciculatum. An SAG inoculum and a sucrose-agar globule with root exudates (SAGE) inoculum were prepared, and their spore productions were compared with a soil inoculum. When the SAGE was used as the inoculum on sucrose-agar medium plates the number of spores was increased (35% more than the soil inoculum). After the soil inoculum and SAGE were inoculated on an experimental plant, Zingiber officinale, the percentage root colonization, number of VAM spores, and dry matter content were analyzed. It was observed that the SAGE showed a higher percentage of root colonization (about 10% more), and increases in the number of spores (about 26%) and dry matter (more than 13%) for the two VAM fungal spores than the soil inoculum. The results of this study suggested that the SAGE inoculum may be useful for the mass production of VAM fungi and also for the large scale production of VAM fungal fertilizer.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Mass Production of Paclitaxel by Plant Cell Culture (식물세포배양에 의한 항암제 Paclitaxel의 대랑 생산)

  • CHOI Hyung-Kyoon;SON Joo-Sun;NA Gwang-Hwee;HONG Seung-Suh;SONG Jai-Young
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.27-31
    • /
    • 2002
  • Samyang Genex succeeded in commercialization of anticancer agent-paclitaxel by plant cell culture technology. The core technology of Samyang Genex relating paclitaxel production includes cell line development, cell line preservation, cell culture, scale-up technology, and purification technology. On the basis of the research, Samyang Genex built the factory operated by CGMP (current good manufacturing practice). The $paclitaxel-Genexol^{TM}$ is commercially available in Korea, and it will be launched to world market including USA after approval US FDA.

  • PDF

A Study of Mastless Pattern Fabrication using Stereolithography (광조형을 이용한 마스크리스 패턴형성에 관한 연구)

  • 정영대;조인호;손재혁;임용관;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.503-507
    • /
    • 2002
  • Mask manufacturing is a high COC and COO process in developing of semiconductor devices, because of the mass production tool with high resolution. Direct writing has been thought to be one of the patterning method to cope with development or small-lot production of the device. This study focused on the development of the direct, mastless patterning process using stereolithography tool for the easy and convenient application to micro and miso scale products. Experiments are utilized by three dimensional CAD/CAM as a mask and photo-curable resin as a photo-resist in a conventional stereo-lithography apparatus. Results show that the resolution of the pattern was achieved about 300 micron because of complexity of SLA apparatus settings, inspite of 100 micro of inherent resolution. This paper concludes that photo resist and laser spot diameter should be adjusted to get finer patterns and the proposed method is significantly feasible to mastless and low cost patterning with micro and miso scale.

  • PDF

Mass Production of Paclitaxel by Plant Cell Culture (식물세포배양에 의한 항암제 Paclitaxel의 대량 생산)

  • Choi, Hyung-Kyoon;Son, Joo-Sun;Na, Gwang-Hee;Hong, Seung-Suh;Song, Jai-Young
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.27-31
    • /
    • 2002
  • Samyang Genex succeeded in commercialization of anticancer agent-paclitaxel by plant cell culture technology. The core technology of Samyang Genex relating paclitaxel production includes cell line development, cell line preservation, cell culture, scale-up technology, and purification technology. On the basis of the research, Samyang Genex built the factory operated by CGMP (current good manufacturing practice). The $paclitaxel-Cenexol^{TH}-is$ commercially available in Korea, and it will be launched to world market including USA after approval of US FDA.

  • PDF

Mass Production of Paclitaxel by Plant Cell Culture (식물세포배양에 의한 항암제 Paclitaxel의 대량 생산)

  • Choi, Hyung-Kyoon;Son, Joo-Sun;Na, Gwang-Hwee;Hong, Seung-Suh;Park, Yeon-Seung;Song, Jai-Young
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.59-62
    • /
    • 2002
  • Samyang Genex succeeded in commercialization of anticancer agent-paclitaxel by plant cell culture technology. The core technology of Samyang Genex relating paclitaxel production includes cell line development, cell line preservation, cell culture, scale-up technology, and purification technology. On the basis of the research, Samyang Genex built the factory operated by CGMP (current good manufacturing practice). The paclitaxel-Genexol$^{TM}$-is commercially available in Korea, and it will be launched to world market including USA after approval of US FDA.

Food 3D-printing Technology and Its Application in the Food Industry (식품 3D-프린팅 기술과 식품 산업적 활용)

  • Kim, Chong-Tai;Maeng, Jin-Soo;Shin, Weon-Son;Shim, In-Cheol;Oh, Seung-Il;Jo, Young-Hee;Kim, Jong-Hoon;Kim, Chul-Jin
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.12-21
    • /
    • 2017
  • Foods are becoming more customized and consumers demand food that provides great taste and appearance and that improves health. Food three-dimensional (3D)-printing technology has a great potential to manufacture food products with customized shape, texture, color, flavor, and even nutrition. Food materials for 3D-printing do not rely on the concentration of the manufacturing processes of a product in a single step, but it is associated with the design of food with textures and potentially enhanced nutritional value. The potential uses of food 3D-printing can be forecasted through the three following levels of industry: consumer-produced foods, small-scale food production, and industrial scale food production. Consumer-produced foods would be made in the kitchen, a traditional setting using a nontraditional tool. Small-scale food production would include shops, restaurants, bakeries, and other institutions which produce food for tens to thousands of individuals. Industrial scale production would be for the mass consumer market of hundreds of thousands of consumers. For this reason, food 3D-printing could make an impact on food for personalized nutrition, on-demand food fabrication, food processing technologies, and process design in food industry in the future. This article review on food materials for 3D-printing, rheology control of food, 3D-printing system for food fabrication, 3D-printing based on molecular cuisine, 3D-printing mobile platform for customized food, and future trends in the food market.