• 제목/요약/키워드: mass-scale

검색결과 1,466건 처리시간 0.025초

내부순환반응기의 Scale-up에 따른 동력학적 특성의 변화 (Dynamic Behavior of an Internal Loop Reactor during Scale-up)

  • 최윤찬;박영식
    • 한국환경과학회지
    • /
    • 제6권1호
    • /
    • pp.25-31
    • /
    • 1997
  • The variations of gas hold-up, overall volumetric oxygen mass transfer coefficients and liquid circulation velocity in an internal loop reactor were investigated to manifest scale-up effect. The relationship between superficial gas velocity and gas hold-up were found as Ugr = 0.045 $\varepsilon$r in the pilot-scale and Ugr = 0.056 $\varepsilon$r in the bench-scale reactor. The overall volumetric oxygen mass tractsfer coefficient, KLa was slightly increased in the pilot-scale than in the bench-scale reactor. Flow regime was changed from the bubble flow to the churn-turbulent flow when the superficial gas velocity reached to 3.5 - 4 cm/sec in the pilot-scale.

  • PDF

절리 암반물성의 크기효과 및 그 적용에 관한 연구 (A Study on Scale Effects in Jointed Rock Mass Properties, and Their Application)

  • 김창용;문현구
    • 한국지반공학회지:지반
    • /
    • 제13권6호
    • /
    • pp.147-164
    • /
    • 1997
  • 본 논문은 절리 암반물성의 크기효과가 암반의 불균질성 및 불연속성에 기인한다고 가정하였다. 이를 위해 대표체적요소의 개념이 적용되는 일반적인 등가물성이론을 탈피하여 불규칙적인 절리기하와 임의의 절리수 및 임의의 절리 방향성을 고려할 수 있는 등가물성이론에 대해서 연구하였다. 이론적인 연구를 바탕으로 이 이론을 실제 문제에 적용한 결과 암반요소의 크기에 따라 달라지는 물성 변화를 관찰하고, 크기효과에 관한 여러 가지 연구를 수행하였다. 특히, 수치해석적인 방법으로 크기효과를 증명하는 과정의 타당성을 입증하고 크기효과의 구체적인 원인을 알아보기 위해서 4개의 모델에 대해서 전산실험을 수행하였다. 이 실험으로부터 증명된 내용을 토대로 실제 3차원 구조물을 대상으로 크기효과 실험을 수행하였다. 이 실험 과정 중 절리의 여러 역학적인 성질들이 암반강도 및 탄성계수의 크기효과에 미치는 영향을 관찰해 보았다. 또 크기효과가 특정 절리구조에서 발생되는 것이 아니고 절리를 포함하는 모든 경우에서 발생됨을 증명하기 위해 절리 구조가 다른 두 모델을 대상으로 크기효과 실험을 수행하였다.

  • PDF

철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구 (A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models)

  • 양희관;서주원;조남소;장승필
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

  • Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Choi, Ik-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.419-425
    • /
    • 2015
  • In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton's laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS) with an accuracy of ${\pm}1g$. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

가속도 변위 검출형 동적 질량 측정 제어 시스템 (Dynamic Mass-measurement control System of Acceleration and Displacement Sensing Type)

  • Kim, B.S.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.109-116
    • /
    • 1994
  • Quickness and precision are the two most important requirements for an industrial scale used in production lines. In this paper, a new approach, "Dynamic-Mass measurement control System of Acceleration and Displacement(DMS-AD) sensing", is presented to improve some of drowbacks in conventional scales. The system, consisted of acceleration and displace- ment sensors, spring scale and microcomputer, is based on full utilization of dynamic mass measurement of acceleration and displacement via microcomputer-assisted real time monitoring. The rsulting system, when combined with appropriate dynamic mass estimation algorithm software, has shown its effectiveness in terms of two desirable characteristics required. required.

  • PDF

Halo interactions in the Horizon run 4 simulation

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.46-46
    • /
    • 2014
  • Interactions such as mergers and flybys play a fundamental role in shaping galaxy morphology. We used the Horizon Run 4 cosmological N-body simulations to study the frequency and the type of halo interactions as a function of the environment, the separation p, the mass ratio q, and the target halo mass. We defined targets as haloes more massive than 10^11 Msun/h, and a target is interacting if it is located within the virial radius of a neighbour halo more massive than 0.4 times the target mass. We find that the interaction rate as a function of time has a universal shape for different halo mass and large-scale density, with an increase and saturation. Larger density yield steeper slopes and larger final interaction rates, while larger masses saturate later. Most interactions happen at large-scale density contrast ${\delta}$ about 10^3, regardless of the redshift. We also report the existence of two modes of interactions in the (p,q) plane, reflecting the nature (satellite or main halo) of the target halo. These two trends strongly evolve with redshift, target mass, and large-scale density. Interacting pairs have similar spins parameters and aligned spins, with radial trajectories, and prograde encounters for non-radial trajectories. The satellite trajectories become less and less radial as time proceed. This effect is stronger for higher-mass target, but independent of the large-scale density.

  • PDF

Beyond halo mass: the role of vorticity-rich filaments in quenching galaxy mass assembly

  • 송현미;;황호성
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.39.1-39.1
    • /
    • 2020
  • We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The HORIZON-AGN simulation is analysed at z~2 using the DISPERSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.

  • PDF

EVOLUTION OF A MASS ACCRETING PROTOSTAR OF ONE SOLAR MASS UNDER QUASI-HYDROSTATIC EQUILIBRIUM

  • Yun, Hong-Sik
    • 천문학회보
    • /
    • 제3권
    • /
    • pp.18-23
    • /
    • 1978
  • The evolutionary tracks of a protostar of one solar mass under quasi-hydrostatic equilibrium are computed with mass-accretion time scales of $10^3,\;10^4,\;10^5\;and\;10^6$ years, and their resulting behaviors in the H-R diagram are discussed. It is found that there exists a critical time scale of mass accretion, which reverses the course of their evolutionary tracks. A value of the critical time scale appears to lie between $10^3\;and\;10^4$ years. The physical cause for the presence of the critical time scale is discussed. Finally, it is proposed that star formation requires at least several $10^3$ years before any star is born out of dark dense interstellar clouds.

  • PDF

중학생용 수학불안 검사 도구의 개발 및 타당화 연구 (Development of Mathematics Anxiety Scale for Middle School Students & its Validity)

  • 옥보명;이창연;류병국
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제35권3호
    • /
    • pp.233-255
    • /
    • 2021
  • 본 연구의 목적은 수학불안을 줄이기 위한 프로그램의 계획·실행을 위한 중학생용 수학불안 검사 도구의 개발과 타당화에 있다. 본 연구에서는 중학생용 수학불안 검사 도구 개발 및 타당화 과정을 설명하고, 구인타당도를 검증하기 위한 탐색적 요인분석과 확인적 요인분석 과정을 자세하게 기술하였다. 연구 결과로 수학교과, 수학태도, 수학시험, 환경 등 4개 요인 30문항으로 이루어진 중학생용 수학불안 검사 도구 MASS-M이 개발되었다. MASS-M은 중학생의 수학불안 요인으로서 '수학시험' 요인, '환경' 요인, 특히 수학적 처치를 설명하는 '수학교과' 요인과 심리적 처치를 설명하는 '수학태도' 요인을 포함한다. 본 연구에서 도출한 MASS-M은 중학생의 수학불안을 측정하기 위해 타당화한 검사 도구로써, 중학생의 수학불안 관련 연구에 일관성을 유지하고 더 나아가 중학생의 수학불안을 처치하기 위한 프로그램 개발의 토대가 되기를 기대한다.

Large-Scale Environmental Effects on the Mass Assembly of Dark Matter Halos

  • 정인태;이재현;이석영
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.32.2-32.2
    • /
    • 2013
  • We examine large-scale environmental effects on the formation and the mass growth of dark matter halos. To facilitate this, we constructed dark matter halo merger trees from a cosmological N-body simulation, which enabled us to trace the merger information and the assembly history of individual halos. In fact, since the massive halos are more likely to be distributed in denser regions than in less dense regions (Mo & White, 1996), the large-scale environment dependence of the properties of halos can be partly originated from the halo mass effect. In order to avoid such contamination, caused by the mass dependence of halo properties, we carefully measured the local overdensity as the indicator of large-scale environment, which was calculated to be as independent of halo mass as possible. Small halos (${\sim}10^{11-12}M_{\odot}$), which usually host isolated single galaxies, show a notable difference on the formation time of galaxies depending on their large-scale environments, which reconfirms halo assembly bias (Gao & White, 2007). Furthermore, we investigate how this environmental effect on small halos is correlated with the mass assembly history of galaxies by using our semi-analytic model. We found that assembly bias in small halos does not have significant effects on the formation time or on the star formation history of galaxies residing in those halos except for the individual stellar mass of galaxies at z = 0. On average, isolated galaxies in high-density regions tend to be slightly more massive than those in low-density regions. Although the observational data from the current galaxy surveys is not yet sufficient for testing this prediction, future galaxy surveys will be able to explore these small galaxies more thoroughly.

  • PDF