• 제목/요약/키워드: mass-radius-luminosity relation

검색결과 8건 처리시간 0.02초

ABSOLUTE PARAMETERS AND MASS-RADIUS-LUMINOSITY RELATIONS FOR THE SUB-TYPES OF W UMα BINARIES

  • AWADALLA N. S.;HANNA M. A.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.43-57
    • /
    • 2005
  • The authors have assembled a sample of 80 W UMa binary systems (42 W-subtype and 38 A-subtype) whose light curves have all been solved by means of the recent W-D code and combined with up-to-date radial velocity solutions. The absolute parameters (masses, radii and luminosities) have been derived (without any constraint on the physical parameters). The main results of this paper are: (1) the mass-luminosity relations for both W&A-subtypes. as well as for all W UMa contact binaries have been shown, (2) the mass-radius relations have been found for both subtypes, (3) some remarks on the evolution status have been presented.

접촉식쌍성의 질량비 분포에 따른 일반적 특성 (GENERAL PROPERTIES OF CONTACT BINARY SYSTEM FOR MASS RATIO DISTRIBUTION)

  • 오규동
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.31-40
    • /
    • 1999
  • Svechnikov & Kuznetsova(1990)의 목록으로부터 761개의 접촉식쌍성을 택하여 그의 물리적 특성에 따라 공통 복사대기층을 갖는 CE형과 공통 대류대기층을 갖는 CW형으로 분류하여 질량비에 따른 그의 특성을 분석하였다. 그 결과 분광형이 조기형인 CE형은 만기형인 CW 형에 비교하여 주성과 반성의 온도차($$\mid${Delta}T$\mid$$)가 크며 주기는 길게 나타났다. 그런데 CW형은 CE형에 비교하여 질량비가 다소 좁은 범위(0.3$L_2/L_1=0.01+0.89q$의 상관 관계를 보였다. 한편, 질량비에 따른 반경과의 관계에서는 CE형과 CWs형의 차이의 원인이 반성의 반경 때문임을 확인하였으며, CW형 접촉식쌍성의 질량비에 따른 두 별의 반경의 합과 반경비와의 새로운 관계를 제시하였다.

  • PDF

RELATION BETWEEN BLACK HOLE MASS AND BULGE LUMINOSITY IN HARD X-RAY SELECTED TYPE 1 AGNS

  • Son, Suyeon;Kim, Minjin;Barth, Aaron J.;Ho, Luis C.
    • 천문학회지
    • /
    • 제55권2호
    • /
    • pp.37-57
    • /
    • 2022
  • Using I-band images of 35 nearby (z < 0.1) type 1 active galactic nuclei (AGNs) obtained with Hubble Space Telescope, selected from the 70-month Swift-BAT X-ray source catalog, we investigate the photometric properties of the host galaxies. With a careful treatment of the point-spread function (PSF) model and imaging decomposition, we robustly measure the I-band brightness and the effective radius of bulges in our sample. Along with black hole (BH) mass estimates from single-epoch spectroscopic data, we present the relation between BH mass and I-band bulge luminosity (MBH-MI,bul relation) of our sample AGNs. We find that our sample lies offset from the MBH-MI,bul relation of inactive galaxies by 0.4 dex, i.e., at a given bulge luminosity, the BH mass of our sample is systematically smaller than that of inactive galaxies. We also demonstrate that the zero point offset in the MBH-MI,bul relation with respect to inactive galaxies is correlated with the Eddington ratio. Based on the Kormendy relation, we find that the mean surface brightness of ellipticals and classical bulges in our sample is comparable to that of normal galaxies, revealing that bulge brightness is not enhanced in our sample. As a result, we conclude that the deviation in the MBH-MI,bul relation from inactive galaxies is possibly because the scaling factor in the virial BH mass estimator depends on the Eddington ratio.

A Semi-empirical Mass-loss Rate in Short-period CVs

  • Kim, Woong-Tae;Sirotkin, Fedir V.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • We present the final results of our study on the mass-loss rate of donor stars in cataclysmic variables (CVs). Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T2, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M2dot of CVs as a function of P. The derived M2dot is at ~10-9.5-10-10 $M\odot$/yr and depends weakly on P when P > 90 min, while it declines very rapidly towards the minimum period when P < 90 min. The semi-empirical M2dot is significantly different from, and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P-M2dot relation is consistent with the angular momentum loss due to gravitational wave emission, and strongly suggests that CV secondaries with 0.075 $M\odot$ < M2 < 0.2 $M\odot$ are less than 2 Gyrs old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T1 of white dwarfs. Based on the semi-empirical M2dot, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.

  • PDF

근접촉쌍성(NCBs)의 일반적 특성 (GENERAL PROPERTIES OF NEAR-CONTACT BINARIES)

  • 오규동;김호일;강영운;이우백
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.151-162
    • /
    • 2000
  • 근접촉쌍성을 분광형에 따라 A형과 F형으로 분류하여 각각의 물리적 특성과 진화를 조사하였다. 그 결과, 근접촉쌍성이 TRO 이론에 따른 진화 경로를 겪는다고 가정하면, F형이 A형에 비하여 더 접촉에 가까운 즉, W UMa형에 근접한 상태에 있을 가능성이 있음을 알 수 있었다. NCBs의 질량-반경 관계, 질량-광도 관계 및 H-R도를 조사하였는데 그 결과 A형이 F형에 비하여 질량교환이 활발할 것으로 생각된다. 근접촉쌍성은 ZAMS와 평행하게 나타나며 접촉쌍성의 진화 위치와 거의 일치하고 있다.

  • PDF

Mass-Loss Rate in Short-Period Cataclysmic Variables

  • ;김웅태
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.52.1-52.1
    • /
    • 2010
  • The relationship between orbital periods of cataclysmic variables (CV) and mass-loss rates of their donor stars is an important subject of theoretical researches. The observed donor's radii are oversized in comparison with those of isolated unperturbed stars of the same mass, which is thought to be a consequence of the mass-loss. Using the empirical mass-radius relation of CVs and the Hayashi theory for changes in effective temperature, orbital period, and luminosity of the donor with the stellar radius, we find the mass-loss rate of CVs as a function of the orbital period P. The derived mass-loss rate is more or less constant at 10-9.6-10-10M$\odot$ yr-1 with P above 90 minutes and declines very rapidly with P below 90 minutes, reaching 10-10.3-10-11.7M$\odot$ yr-1 when P is close to the minimum period. The turnaround behavior of the mass-loss rate shape with P near the minimal period is much less pronounced than suggested by earlier numerical models, making observational detection of the turnaround highly unlikely. When applied to our new results, SDSS 1035, 1507, 1501 and 1433 systems, previously known as post-bounce CVs, are more likely to be systems that have yet to reach the minimal period.

  • PDF

Fundamental parameters of the eclipsing binaries in the Large Magellanic cloud

  • 홍경수;강영운
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.141.2-141.2
    • /
    • 2012
  • We present photometric solutions of the 26,212 eclipsing binaries discovered in the LMC by Graczyk et al. (2011). They published that 70 percent of a total are detached systems. Another 25 and 5 percent are semi-detached and contact binaries, respectively. We discovered that 21 percent of 26,121 eclipsing binary stars are eccentric orbit systems. The binary star distribution in the LMC is different from those of the Galactic center direction (Bade window). It is very interesting that there are only 5 of 357 (2 percent) stars have eccentric orbit in the Galactic Center (Kang 2011). We selected the light curve of 18,274 detached systems. Then we estimated the fundamental parameters on the basis of their photometric solutions and the semi-major-axis (a) assuming the distance modulus to the LMC~18.50. We compared the estimated fundamental parameters with an empirical mass-luminosity relation and consistency between mass-radius relation base on stellar evolution model in the low metallicity (Z=0.008) by Bertelli et al. (2009). This method allows for independent determine of the fundamental parameters of the eclipsing binaries in the LMC without the radial velocity curves.

  • PDF

STATISTICS OF GRAVITATIONAL LENSING BY A GALAXY IN CLUSTER OR IN FIELD

  • YOON SO-YOON;PARK MYEONG-GU
    • 천문학회지
    • /
    • 제29권2호
    • /
    • pp.119-136
    • /
    • 1996
  • To examine the effect of neighboring galaxies on the gravitational lensing statistics, we performed numerical simulations of lensing by many galaxies. The models consist of a galaxy in the rich cluster like Coma, or a galaxy surrounded by field galaxies in $\Omega_0 = 1$ universe with $\Omega_{gal} = 0.1,\;\Omega_{gal} = 0.3\;or\;\Omega_{gal}=1.0\;,\;where\;\Omega_{gal}$ is the total mass in galaxies. Field galaxies either have the same mass or follow Schechter luminosity function and luminosity-velocity relation. Each lensing galaxy is assumed to be singular isothermal sphere (SIS) with finite cutoff radius. In most simulations, the lensing is mainly due to the single galaxy. But in $\Omega_{gal} = 3$ universe, one out of five simulations have 'collective lensing' event in which more than two galaxies collectively produce multiple images. These cases cannot be incorporated into the simple 'standard' lensing statistics calculations. In cases where 'collective lensing' does not occur, distribution of image separation changes from delta function to bimodal distribution due to shear induced by the surrounding galaxies. The amount of spread in the distribution is from a few $\%\;up\;to\;50\%$ of the mean image separation in case when the galaxy is in the Coma-like cluster or when the galaxy is in the field with $\Omega_{gal} = 0.1\;or\;\Omega_{gal}=0.3.$ The mean of the image separation changes less than $5\%$ compared with a single lens case. Cross section for multiple image lensing turns out to be relatively insensitive to the presence of the neighboring galaxies, changing less than $5\%$ for Coma-like cluster and $\Omega_{gal}=0.1,\;0.3$ universe cases. So we conclude that Coma-like cluster or field galaxies whose total mass density $\Omega_{gal}<0.3$ do not significantly affect the probability of multiple image lensing if we exclude the 'collective lensing' cases. However, the distribution of the image separations can be significantly affected especially if the 'collective lensing' cases are included. Therefore, the effects of surrounding galaxies may not be negligible when statistics of lensing is used to deduce the cosmological informations.

  • PDF