DOI QR코드

DOI QR Code

RELATION BETWEEN BLACK HOLE MASS AND BULGE LUMINOSITY IN HARD X-RAY SELECTED TYPE 1 AGNS

  • Son, Suyeon (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Minjin (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Barth, Aaron J. (Department of Physics and Astronomy, University of California) ;
  • Ho, Luis C. (Kavli Institute for Astronomy and Astrophysics, Peking University)
  • Received : 2022.03.01
  • Accepted : 2022.04.08
  • Published : 2022.04.30

Abstract

Using I-band images of 35 nearby (z < 0.1) type 1 active galactic nuclei (AGNs) obtained with Hubble Space Telescope, selected from the 70-month Swift-BAT X-ray source catalog, we investigate the photometric properties of the host galaxies. With a careful treatment of the point-spread function (PSF) model and imaging decomposition, we robustly measure the I-band brightness and the effective radius of bulges in our sample. Along with black hole (BH) mass estimates from single-epoch spectroscopic data, we present the relation between BH mass and I-band bulge luminosity (MBH-MI,bul relation) of our sample AGNs. We find that our sample lies offset from the MBH-MI,bul relation of inactive galaxies by 0.4 dex, i.e., at a given bulge luminosity, the BH mass of our sample is systematically smaller than that of inactive galaxies. We also demonstrate that the zero point offset in the MBH-MI,bul relation with respect to inactive galaxies is correlated with the Eddington ratio. Based on the Kormendy relation, we find that the mean surface brightness of ellipticals and classical bulges in our sample is comparable to that of normal galaxies, revealing that bulge brightness is not enhanced in our sample. As a result, we conclude that the deviation in the MBH-MI,bul relation from inactive galaxies is possibly because the scaling factor in the virial BH mass estimator depends on the Eddington ratio.

Keywords

Acknowledgement

We thank the anonymous referee for the constructive feedback that helped to improve the quality of the paper. This work is based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program #15444. LCH was supported by the National Science Foundation of China (11721303, 11991052, 12011540375), China Manned Space Project (CMS-CSST-2021-A04, CMS-CSST-2021-A06), and the National Key R&D Program of China (2016YFA0400702). This work was supported by a National Research Foundation of Korea (NRF) grant (No. 2020R1A2C4001753) funded by the Korean government (MSIT) and under the framework of international cooperation program managed by the National Research Foundation of Korea (NRF-2020K2A9A2A06026245). This research made use of the "k-corrections calculator" service available at http://kcor.sai.msu.ru/.

References

  1. Bennert, V. N., Treu, T., Woo, J.-H., et al. 2010, Cosmic Evolution of Black Holes and Spheroids. IV. The MBH-Lsph Relation, ApJ, 708, 1507 https://doi.org/10.1088/0004-637X/708/2/1507
  2. Bentz, M. C., Denney, K. D., Grier, C. J., et al 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149 https://doi.org/10.1088/0004-637X/767/2/149
  3. Chilingarian, I., Melchior, A.-L., & Zolotukhin, I. 2010, Analytical Approximations of K-corrections in Optical and Near-infrared Bands, MNRAS, 405, 1409
  4. Chilingarian, I. & Zolotukhin, I. 2012, A Universal Ultraviolet-optical Colour-colour-magnitude Relation of Galaxies, MNRAS, 419, 1727 https://doi.org/10.1111/j.1365-2966.2011.19837.x
  5. Davis, S.W. & Laor A. 2011 The Radiative Efficiency of Accretion Flows in Individual Active Galactic Nuclei, ApJ, 728, 98 https://doi.org/10.1088/0004-637X/728/2/98
  6. Di Matteo, T., Springel, V., & Hernquist, L. 2005, Energy Input from Quasars Regulates the Growth and Activity of Black Holes and Their Host Galaxies, Nature, 433, 604 https://doi.org/10.1038/nature03335
  7. Du, P., Lu, K.-X., Zhang, Z.-X., et al. 2016, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region, ApJ, 825, 126 https://doi.org/10.3847/0004-637X/825/2/126
  8. Fisher, D. B. & Drory, N. 2008, The Structure of Classical Bulges and Pseudobulges: the Link Between Pseudobulges and S'ersic Index, AJ, 136, 773 https://doi.org/10.1088/0004-6256/136/2/773
  9. Fonseca Alvarez, G. F., Trump, J. R., Homayouni, Y., et al. 2020, The Sloan Digital Sky Survey Reverberation Mapping Project: The Hβ Radius-Luminosity Relation, ApJ, 899, 73 https://doi.org/10.3847/1538-4357/aba001
  10. Fukugita, M., Shimasaku, K., & Ichikawa, T. 1995, Galaxy Colors in Various Photometric Band Systems, PASP, 107, 945 https://doi.org/10.1086/133643
  11. Gadotti, D. A. 2009 Structural Properties of Pseudo-bulges, Classical bulges and Elliptical galaxies: a Sloan Digital Sky Survey Perspective, MNRAS, 393, 1531 https://doi.org/10.1111/j.1365-2966.2008.14257.x
  12. Gao, H., Ho, L. C., Barth, A. J., & Li, Z.-Y. 2020, The Carnegie-Irvine Galaxy Survey. IX. Classification of Bulge Types and Statistical Properties of Pseudo Bulges, ApJS, 247, 20 https://doi.org/10.3847/1538-4365/ab67b2
  13. Greene, J. E. & Ho, L. C. 2005, Estimating Black Hole Masses in Active Galaxies Using the Hα Emission Line, ApJ, 630, 122 https://doi.org/10.1086/431897
  14. Grogin, N. A., Lim, P. L., Maybhate, et al. 2010, Post-SM4 ACS/WFC Bias Striping: Characterization And Mitigation, The 2010 HST Calibration Workshop, ed. S. Deustua & C. Oliveira (Baltimore, MD: STScI), 54
  15. Harris, W. E. 2018, Transformation of HST WFC3/UVIS Filters to the Standard BVI System, AJ, 156, 296 https://doi.org/10.3847/1538-3881/aaedb8
  16. Ho, L. C. 2008, Nuclear Activity in Nearby Galaxies, ARA&A, 46, 475 https://doi.org/10.1146/annurev.astro.45.051806.110546
  17. Ho, L. C. & Kim, M. 2014, The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies, ApJ, 789, 17 https://doi.org/10.1088/0004-637X/789/1/17
  18. Ho, L. C. & Kim, M. 2015, A Revised Calibration of the Virial Mass Estimator for Black Holes in Active Galaxies Based on Single-epoch Hβ Spectra, ApJ, 809, 123 https://doi.org/10.1088/0004-637X/809/2/123
  19. Into, T. & Portinari, L. 2013, New Colour-mass-to-light relations: the Role of the Asymptotic Giant Branch Phase and of Interstellar Dust, MNRAS, 430, 2715 https://doi.org/10.1093/mnras/stt071
  20. Isobe, T., Feigelson, E. D., Akritas, M. G., & Babu, G. J. 1990, Linear Regression in Astronomy. I., ApJ, 364, 104 https://doi.org/10.1086/169390
  21. Kaspi, S., Smith, P. S., Netzer, H., et al 2000, Reverberation Measurements for 17 Quasars and the Size-MassLuminosity Relations in Active Galactic Nuclei, ApJ, 533, 631 https://doi.org/10.1086/308704
  22. Kim, M., Barth, A. J., Ho, L. C., et al. 2021, A Hubble Space Telescope Imaging Survey of Low-redshift Swift-BAT Active Galaxies, ApJS, 256, 40 https://doi.org/10.3847/1538-4365/ac133e
  23. Kim, M., & Ho, L. C. 2019, Evidence for a Young Stellar Population in Nearby Type 1 Active Galaxies, ApJ, 876, 35 https://doi.org/10.3847/1538-4357/ab11cf
  24. Kim, M.. Ho, L. C., Peng, C. Y., et al. 2008a, Decomposition of the Host Galaxies of Active Galactic Nuclei Using Hubble Space Telescope Images, ApJS, 179, 283 https://doi.org/10.1086/591796
  25. Kim, M.. Ho, L. C., Peng, C. Y., et al. 2008b, The Origin of the Intrinsic Scatter in the Relation Between Black Hole Mass and Bulge Luminosity for Nearby Active Galaxies, ApJ, 687, 767 https://doi.org/10.1086/591663
  26. Kim, M.. Ho, L. C., Peng, C. Y., et al. 2017, Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei, ApJS, 232, 21 https://doi.org/10.3847/1538-4365/aa8a75
  27. Kormendy, J. 1977, Brightness Distributions in Compact and Normal Galaxies. II. Structure Parameters of the Spheroidal Component, ApJ, 218, 333 https://doi.org/10.1086/155687
  28. Kormendy, J., Ho, L. C. 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, ARA&A, 51, 511 https://doi.org/10.1146/annurev-astro-082708-101811
  29. Koss, M., Trakhtenbrot, B., Ricci, C., et al. 2017, BAT AGN Spectroscopic Survey. I. Spectral Measurements, Derived Quantities, and AGN Demographics, ApJ, 850, 74 https://doi.org/10.3847/1538-4357/aa8ec9
  30. Krist, J. E., Hook, R. N., & Stoehr, F. 2011, 20 years of Hubble Space Telescope Optical Modeling Using Tiny Tim, Proc. SPIE, 8127, 81270J
  31. Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release, ApJS, 250, 8 https://doi.org/10.3847/1538-4365/aba623
  32. Marconi, A., Axon, D. J., Maiolino, R., et al. 2008, The Effect of Radiation Pressure on Virial Black Hole Mass Estimates and the Case of Narrow-Line Seyfert 1 Galaxies, ApJ, 678, 693 https://doi.org/10.1086/529360
  33. Martini, P. 2004, Why Does Low-Luminosity AGN Fueling Remain an Unsolved Problem?, in IAU Symp. 222, The Interplay Among Black Holes, Stars and ISM in Galactic Nuclei, ed. T. Storchi-Bergmann, L. C. Ho, & H. R. Schmitt (Cambridge: Cambridge Univ. Press), 235
  34. Mejia-Restrepo, J. E., Lira, P., Netzer, H., et al. 2017, The Virial Factor and Biases in Single Epoch Black Hole Mass Determinations, Front. Astron. Space Sci., 4, 70 https://doi.org/10.3389/fspas.2017.00070
  35. Park, D., Woo, J.-H., Bennert, V. N., et al. 2014, Cosmic Evolution of Black Holes and Spheroids. V. The Relation between Black Hole Mass and Host Galaxy Luminosity for a Sample of 79 Active Galaxies, ApJ, 799, 164
  36. Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, Detailed Structural Decomposition of Galaxy Images, AJ, 124, 266 https://doi.org/10.1086/340952
  37. Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models, AJ, 139, 2097 https://doi.org/10.1088/0004-6256/139/6/2097
  38. Peng, C. Y., Impey, C. D., & Rix, H.-W., et al. 2006, Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts, ApJ, 649, 616 https://doi.org/10.1086/506266
  39. Planck Collaboration, Ade P. A. R., Aghanim N. et al. 2016, Planck 2015 results. XIII. Cosmological Parameters, A&A, 594, A13 https://doi.org/10.1051/0004-6361/201525830
  40. Ricci, C., Trakhtenbrot, B., Koss, M. J., et al. 2017, BAT AGN Spectroscopic Survey. V. X-ray Properties of the Swift/BAT 70-month AGN Catalog, ApJS, 233, 17 https://doi.org/10.3847/1538-4365/aa96ad
  41. Schlafly, E. F., & Finkbeiner, D. P. 2011, Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD, ApJ, 737, 103 https://doi.org/10.1088/0004-637X/737/2/103
  42. Schmidt, M., & Green, R. F. 1983, Quasar Evolution Derived from the Palomar Bright Quasar Survey and other Complete Quasar Surveys, ApJ, 269, 352 https://doi.org/10.1086/161048
  43. Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, The Slope of the Black Hole Mass versus Velocity Dispersion Correlation, ApJ, 574, 740 https://doi.org/10.1086/341002
  44. Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, AJ, 122, 549 https://doi.org/10.1086/321167
  45. van Dokkum, P. G. 2001, Cosmic-Ray Rejection by Laplacian Edge Detection, PASP, 113, 1420 https://doi.org/10.1086/323894
  46. Vestergaard, M., & Peterson, B. M. 2006, Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships, ApJ, 641, 689 https://doi.org/10.1086/500572
  47. Volonteri, M., & Rees, M. J. 2005, Rapid Growth of High-Redshift Black Holes, ApJ, 633, 624 https://doi.org/10.1086/466521
  48. Woo, J.-H., Treu, T., Malkan, M. A., & Blandford, R. D. 2008, Cosmic Evolution of Black Holes and Spheroids. III. The MBH* Relation in the Last Six Billion Years, ApJ, 681, 925 https://doi.org/10.1086/588804
  49. Xie, Y., Ho, L. C., Zhuang, M.-Y., et al. 2021, The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars, ApJ, 910, 124 https://doi.org/10.3847/1538-4357/abe404
  50. Yu, Q., & Tremaine, S. 2002, Observational Constraints on Growth of Massive Black Holes, MNRAS, 335, 965 https://doi.org/10.1046/j.1365-8711.2002.05532.x
  51. Zhao, Y., Ho, L. C., Shangguan, J., et al. 2021, The Diverse Morphology, Stellar Population, and Black Hole Scaling Relations of the Host Galaxies of Nearby Quasars, ApJ, 911, 94 https://doi.org/10.3847/1538-4357/abe8d4
  52. Zhao, D., Ho, L. C., Zhao, Y., et al. 2019, The Role of Major Mergers and Nuclear Star Formation in Nearby Obscured Quasars, ApJ, 877, 52 https://doi.org/10.3847/1538-4357/ab1921
  53. Zhuang, M.-Y., & Ho, L. C. 2020, The Interplay between Star Formation and Black Hole Accretion in Nearby Active Galaxies, ApJ, 896, 108 https://doi.org/10.3847/1538-4357/ab8f2e
  54. Zhuang, M.-Y., Ho, L. C., & Shangguan, J. 2021, Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies, ApJ, 906, 38 https://doi.org/10.3847/1538-4357/abc94d