Browse > Article
http://dx.doi.org/10.5303/JKAS.2022.55.2.37

RELATION BETWEEN BLACK HOLE MASS AND BULGE LUMINOSITY IN HARD X-RAY SELECTED TYPE 1 AGNS  

Son, Suyeon (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University)
Kim, Minjin (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University)
Barth, Aaron J. (Department of Physics and Astronomy, University of California)
Ho, Luis C. (Kavli Institute for Astronomy and Astrophysics, Peking University)
Publication Information
Journal of The Korean Astronomical Society / v.55, no.2, 2022 , pp. 37-57 More about this Journal
Abstract
Using I-band images of 35 nearby (z < 0.1) type 1 active galactic nuclei (AGNs) obtained with Hubble Space Telescope, selected from the 70-month Swift-BAT X-ray source catalog, we investigate the photometric properties of the host galaxies. With a careful treatment of the point-spread function (PSF) model and imaging decomposition, we robustly measure the I-band brightness and the effective radius of bulges in our sample. Along with black hole (BH) mass estimates from single-epoch spectroscopic data, we present the relation between BH mass and I-band bulge luminosity (MBH-MI,bul relation) of our sample AGNs. We find that our sample lies offset from the MBH-MI,bul relation of inactive galaxies by 0.4 dex, i.e., at a given bulge luminosity, the BH mass of our sample is systematically smaller than that of inactive galaxies. We also demonstrate that the zero point offset in the MBH-MI,bul relation with respect to inactive galaxies is correlated with the Eddington ratio. Based on the Kormendy relation, we find that the mean surface brightness of ellipticals and classical bulges in our sample is comparable to that of normal galaxies, revealing that bulge brightness is not enhanced in our sample. As a result, we conclude that the deviation in the MBH-MI,bul relation from inactive galaxies is possibly because the scaling factor in the virial BH mass estimator depends on the Eddington ratio.
Keywords
black hole physics; galaxies: active; galaxies: Seyfert; quasars: general;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Martini, P. 2004, Why Does Low-Luminosity AGN Fueling Remain an Unsolved Problem?, in IAU Symp. 222, The Interplay Among Black Holes, Stars and ISM in Galactic Nuclei, ed. T. Storchi-Bergmann, L. C. Ho, & H. R. Schmitt (Cambridge: Cambridge Univ. Press), 235
2 Schmidt, M., & Green, R. F. 1983, Quasar Evolution Derived from the Palomar Bright Quasar Survey and other Complete Quasar Surveys, ApJ, 269, 352   DOI
3 Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, Detailed Structural Decomposition of Galaxy Images, AJ, 124, 266   DOI
4 Kormendy, J. 1977, Brightness Distributions in Compact and Normal Galaxies. II. Structure Parameters of the Spheroidal Component, ApJ, 218, 333   DOI
5 Kormendy, J., Ho, L. C. 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, ARA&A, 51, 511   DOI
6 Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release, ApJS, 250, 8   DOI
7 Mejia-Restrepo, J. E., Lira, P., Netzer, H., et al. 2017, The Virial Factor and Biases in Single Epoch Black Hole Mass Determinations, Front. Astron. Space Sci., 4, 70   DOI
8 Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models, AJ, 139, 2097   DOI
9 Ricci, C., Trakhtenbrot, B., Koss, M. J., et al. 2017, BAT AGN Spectroscopic Survey. V. X-ray Properties of the Swift/BAT 70-month AGN Catalog, ApJS, 233, 17   DOI
10 Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, The Slope of the Black Hole Mass versus Velocity Dispersion Correlation, ApJ, 574, 740   DOI
11 Into, T. & Portinari, L. 2013, New Colour-mass-to-light relations: the Role of the Asymptotic Giant Branch Phase and of Interstellar Dust, MNRAS, 430, 2715   DOI
12 Chilingarian, I. & Zolotukhin, I. 2012, A Universal Ultraviolet-optical Colour-colour-magnitude Relation of Galaxies, MNRAS, 419, 1727   DOI
13 Du, P., Lu, K.-X., Zhang, Z.-X., et al. 2016, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region, ApJ, 825, 126   DOI
14 Fukugita, M., Shimasaku, K., & Ichikawa, T. 1995, Galaxy Colors in Various Photometric Band Systems, PASP, 107, 945   DOI
15 Greene, J. E. & Ho, L. C. 2005, Estimating Black Hole Masses in Active Galaxies Using the Hα Emission Line, ApJ, 630, 122   DOI
16 Ho, L. C. 2008, Nuclear Activity in Nearby Galaxies, ARA&A, 46, 475   DOI
17 Bennert, V. N., Treu, T., Woo, J.-H., et al. 2010, Cosmic Evolution of Black Holes and Spheroids. IV. The MBH-Lsph Relation, ApJ, 708, 1507   DOI
18 Bentz, M. C., Denney, K. D., Grier, C. J., et al 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149   DOI
19 Chilingarian, I., Melchior, A.-L., & Zolotukhin, I. 2010, Analytical Approximations of K-corrections in Optical and Near-infrared Bands, MNRAS, 405, 1409
20 Davis, S.W. & Laor A. 2011 The Radiative Efficiency of Accretion Flows in Individual Active Galactic Nuclei, ApJ, 728, 98   DOI
21 Di Matteo, T., Springel, V., & Hernquist, L. 2005, Energy Input from Quasars Regulates the Growth and Activity of Black Holes and Their Host Galaxies, Nature, 433, 604   DOI
22 Fonseca Alvarez, G. F., Trump, J. R., Homayouni, Y., et al. 2020, The Sloan Digital Sky Survey Reverberation Mapping Project: The Hβ Radius-Luminosity Relation, ApJ, 899, 73   DOI
23 Ho, L. C. & Kim, M. 2014, The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies, ApJ, 789, 17   DOI
24 Fisher, D. B. & Drory, N. 2008, The Structure of Classical Bulges and Pseudobulges: the Link Between Pseudobulges and S'ersic Index, AJ, 136, 773   DOI
25 Gao, H., Ho, L. C., Barth, A. J., & Li, Z.-Y. 2020, The Carnegie-Irvine Galaxy Survey. IX. Classification of Bulge Types and Statistical Properties of Pseudo Bulges, ApJS, 247, 20   DOI
26 Harris, W. E. 2018, Transformation of HST WFC3/UVIS Filters to the Standard BVI System, AJ, 156, 296   DOI
27 Kaspi, S., Smith, P. S., Netzer, H., et al 2000, Reverberation Measurements for 17 Quasars and the Size-MassLuminosity Relations in Active Galactic Nuclei, ApJ, 533, 631   DOI
28 Gadotti, D. A. 2009 Structural Properties of Pseudo-bulges, Classical bulges and Elliptical galaxies: a Sloan Digital Sky Survey Perspective, MNRAS, 393, 1531   DOI
29 Ho, L. C. & Kim, M. 2015, A Revised Calibration of the Virial Mass Estimator for Black Holes in Active Galaxies Based on Single-epoch Hβ Spectra, ApJ, 809, 123   DOI
30 Isobe, T., Feigelson, E. D., Akritas, M. G., & Babu, G. J. 1990, Linear Regression in Astronomy. I., ApJ, 364, 104   DOI
31 Kim, M., & Ho, L. C. 2019, Evidence for a Young Stellar Population in Nearby Type 1 Active Galaxies, ApJ, 876, 35   DOI
32 Kim, M.. Ho, L. C., Peng, C. Y., et al. 2008a, Decomposition of the Host Galaxies of Active Galactic Nuclei Using Hubble Space Telescope Images, ApJS, 179, 283   DOI
33 Yu, Q., & Tremaine, S. 2002, Observational Constraints on Growth of Massive Black Holes, MNRAS, 335, 965   DOI
34 Kim, M.. Ho, L. C., Peng, C. Y., et al. 2008b, The Origin of the Intrinsic Scatter in the Relation Between Black Hole Mass and Bulge Luminosity for Nearby Active Galaxies, ApJ, 687, 767   DOI
35 Kim, M.. Ho, L. C., Peng, C. Y., et al. 2017, Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei, ApJS, 232, 21   DOI
36 Kim, M., Barth, A. J., Ho, L. C., et al. 2021, A Hubble Space Telescope Imaging Survey of Low-redshift Swift-BAT Active Galaxies, ApJS, 256, 40   DOI
37 Grogin, N. A., Lim, P. L., Maybhate, et al. 2010, Post-SM4 ACS/WFC Bias Striping: Characterization And Mitigation, The 2010 HST Calibration Workshop, ed. S. Deustua & C. Oliveira (Baltimore, MD: STScI), 54
38 Volonteri, M., & Rees, M. J. 2005, Rapid Growth of High-Redshift Black Holes, ApJ, 633, 624   DOI
39 Woo, J.-H., Treu, T., Malkan, M. A., & Blandford, R. D. 2008, Cosmic Evolution of Black Holes and Spheroids. III. The MBH* Relation in the Last Six Billion Years, ApJ, 681, 925   DOI
40 Xie, Y., Ho, L. C., Zhuang, M.-Y., et al. 2021, The Infrared Emission and Vigorous Star Formation of Low-redshift Quasars, ApJ, 910, 124   DOI
41 Zhao, Y., Ho, L. C., Shangguan, J., et al. 2021, The Diverse Morphology, Stellar Population, and Black Hole Scaling Relations of the Host Galaxies of Nearby Quasars, ApJ, 911, 94   DOI
42 Zhao, D., Ho, L. C., Zhao, Y., et al. 2019, The Role of Major Mergers and Nuclear Star Formation in Nearby Obscured Quasars, ApJ, 877, 52   DOI
43 Zhuang, M.-Y., & Ho, L. C. 2020, The Interplay between Star Formation and Black Hole Accretion in Nearby Active Galaxies, ApJ, 896, 108   DOI
44 Schlafly, E. F., & Finkbeiner, D. P. 2011, Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD, ApJ, 737, 103   DOI
45 Zhuang, M.-Y., Ho, L. C., & Shangguan, J. 2021, Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies, ApJ, 906, 38   DOI
46 Koss, M., Trakhtenbrot, B., Ricci, C., et al. 2017, BAT AGN Spectroscopic Survey. I. Spectral Measurements, Derived Quantities, and AGN Demographics, ApJ, 850, 74   DOI
47 Krist, J. E., Hook, R. N., & Stoehr, F. 2011, 20 years of Hubble Space Telescope Optical Modeling Using Tiny Tim, Proc. SPIE, 8127, 81270J
48 Marconi, A., Axon, D. J., Maiolino, R., et al. 2008, The Effect of Radiation Pressure on Virial Black Hole Mass Estimates and the Case of Narrow-Line Seyfert 1 Galaxies, ApJ, 678, 693   DOI
49 Park, D., Woo, J.-H., Bennert, V. N., et al. 2014, Cosmic Evolution of Black Holes and Spheroids. V. The Relation between Black Hole Mass and Host Galaxy Luminosity for a Sample of 79 Active Galaxies, ApJ, 799, 164
50 Peng, C. Y., Impey, C. D., & Rix, H.-W., et al. 2006, Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts, ApJ, 649, 616   DOI
51 Planck Collaboration, Ade P. A. R., Aghanim N. et al. 2016, Planck 2015 results. XIII. Cosmological Parameters, A&A, 594, A13   DOI
52 Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, AJ, 122, 549   DOI
53 van Dokkum, P. G. 2001, Cosmic-Ray Rejection by Laplacian Edge Detection, PASP, 113, 1420   DOI
54 Vestergaard, M., & Peterson, B. M. 2006, Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships, ApJ, 641, 689   DOI