• Title/Summary/Keyword: mass-critical

Search Result 1,070, Processing Time 0.034 seconds

Analysis of Hypervelocity Impact Fracture Behavior of Multiple Bumper Steel Plates (다층 강재 방호판의 초고속 충격 파괴거동해석)

  • Jo, Jong Hyun;Lee, Young Shin;Kim, Jae Hoon;Bae, Yong Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.761-768
    • /
    • 2013
  • New warheads are designed and developed to be highly lethal when used as part of ballistic missile payloads. There are many trades associated with the design of a central warhead core, mainly dealing with the projectiles or penetrators. Obviously, a payload-type configuration is very susceptible to kills from one projectile because of the high impacts required for bomblet or submunition payloads. Based on these requirements, the optimum kill vehicle configuration will have the smallest mass and relative velocity that will kill all the submunitions. The designs of the penetrator shape and size are directly related to the space and weight of the warhead. The shape, size, L/D, penetrator material, and manner in which they are inserted inside the surrounding explosive segments are critical in achieving successful penetrator design. The AUTODYN-3D code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of the penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, shape, and L/D of the penetrator.

Improved Drying Process for Electrodes in Production of Lithium-Ion Batteries for Electric Vehicles (전기자동차용 리튬이온 전지의 제조공정을 위해 개선된 극판 건조 기술)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2018
  • An electric vehicle is an environmentally friendly vehicle because there is no exhaust gas, unlike gasoline automobiles. On the other hand, because the electric vehicle is driven by electric power charged in batteries, the distance to go through a single charge depends on the energy density of the batteries. Therefore, a lithium-ion battery with a high energy density is a good candidate for batteries in electric vehicles. Because the electrode is an essential component that governs the efficiency of a lithium-ion battery, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the drying process during the electrode manufacturing process is a critical process that has a significant influence on the performance. This paper proposes an innovative process for improving the efficiency and productivity of the drying process in electrode manufacturing and describe the equipment design method and development results. In particular, the design procedure and development method for enhancing the electrode adhesion power, atmospheric pressure superheated steam drying technology, and drying furnace slimming technologies are presented. As a result, high-speed drying technology was developed for battery electrodes through the world's first turbo dryer technology for mass production using open/integrated atmospheric pressure superheated steam. Compared to the conventional drying process, the drying furnace improved the productivity (Dry Lead Time $0.7min{\rightarrow}0.5min$).

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Analysis of the Controlling Factors of an Urban-type Landslide at Hwangryeong Mountain Based on Tree Growth Patterns and Geomorphology (부산 황령산에서의 수목 성장 및 지형 특성을 이용한 도시 산사태의 발생원인 분석)

  • Choi, Jin-Hyuck;Kim, Hyun-Tae;Oh, Jae-Yong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.281-293
    • /
    • 2011
  • We investigated the causes and characteristics of a landslide at Hwangryeong Mountain, Busan, based on aerial photos, annual precipitation data, rock fracture patterns, and geomorphic features using GIS Software, and a statistical analysis of tilted trees. The analyzed slope shows evidence of a previous slope failure event and the possibility of future failures. Although the NW-SE trending slope was relatively stable until 1975, a large-scale slope failure occurred between 1975 and 1985 due to complex factors, including favorably oriented geologic structures, human activity, and heavy rain. This indicates that a detailed study of geologic structures, slope stability, and rainfall characteristics is important for slope cuttings that could be a major factor and cause of urban landsliding events. The statistic analysis of tilted trees shows a slow progressive creeping type of mass wasting with rock falls oblique to the dip of the slope, with the slope having moved towards the west since 1985. A concentration of tree tilting has developed on the northwestern part of the slope, which could reach critical levels in the future. The analysis of deformed trees is a useful tool for understanding landslides and for predicting and preventing future landslide events.

Monitoring and risk assessment of pesticide in school foodservice products in seoul, Korea (서울지역 학교급식 식재료의 잔류농약 위해성 평가)

  • Seo, Young-Ho;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.69-74
    • /
    • 2014
  • We tested for residual pesticide levels in school foodservice agricultural products in Seoul, Korea from 2010 to 2012. A total of 316 samples of 23 different types of agricultural products were analyzed via gas chromatography-nitrogen phosphate detector (GC-NPD), an electron capture detector (GC-${\mu}ECD$), a mass spectrometry detector (GC-MSD), and a high performance liquid chromatography-ultraviolet detector (HPLC-UV). We used multi-analysis methods to analyze 185 different pesticide types. Among the selected agricultural products, residual pesticides were detected in 26 samples (8.2%), of which 6 samples (1.9%) exceeded the Korea Maximum Residue limits (MRLs). We detected pesticide residue in more than 65% of the Chwinamul, while 6 among 9 analyzed samples contained pesticide residue, and 1 sample exceeded the Korea MRLs. Among the 185 kinds of pesticides that we have tested, 18 were detected, while 7 of them were detected more than twice. Data obtained were then used for estimating the potential health risks associated with the exposures to these pesticides. The most critical commodity is carbofuran in the perilla leaves, which has contributed 3.8% to the hazard index (HI). These results showed that the detected pesticides could not be considered as a serious public health problem. Nevertheless, constant supervision is recommended.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

Fracture Characteristics of Ductile Fiber Reinforced Cement based Composites by Collision of Steel Projectile (비상체의 충돌에 의한 고인성 섬유보강 시멘트복합체의 파괴특성)

  • Nam, Jeong-Soo;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Han, Sang-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.92-100
    • /
    • 2015
  • The aim of this study is to evaluate the fracture characteristics of ductile fiber reinforced cement based composites with 1.5 volume ratio of polyvinyl alcohol and steel fiber by high velocity impact of steel projectile. We used gunpowder impact facility to evaluate the fracture characteristics of ductile fiber reinforced cement based composites by collision of steel projectile, and the impact velocity was from about 150 to 1,000m/s. The results of evaluation on the fracture characteristics of ductile fiber reinforced cement based composites were penetration grade, which is the kinetic energy more than three times of no-fiber reinforced specimen (Plain). In addition, ductile fiber reinforced cement based composites did not occurred critical damage other than the debris. In the case of mass loss, Plain specimen was proportional to kinetic energy of steel projectile, while ductile fiber reinforced cement based composites was not significantly affected by kinetic energy of steel projectile. In particular, this tendency had a close relationship with the fracture characteristics of back side of specimens, and the scabbing inhibiting efficiency of PVA specimen was higher than S specimen. In the results of verifying relationship between front and back side calculated by local damage, scabbing occurred at the region close to the back side in the ductile fiber reinforced cement based composites unlike Plain specimen. Thus, in this study, we examined principal fracture behaviors of ductile fiber reinforced cement based composites under collision of steel projectile, and verified that impact resistance performance was improved as compared to Plain specimen.

The Influence of State on the Structure of PSB and Broadcasting Regulatory Body Survey on Political Independence of Broadcasting (방송의 정치적 독립성 확보를 위한 미디어 정책 방향 연구)

  • Choi, Young-Mook;Park, Seung-Dae
    • Korean journal of communication and information
    • /
    • v.46
    • /
    • pp.590-626
    • /
    • 2009
  • The limitation and scarcity of broadcasting waves provide important rationale behind the idea of public ownership of broadcasting waves which can facilitate communications among people with diverse backgrounds and values in the society. Independence of broadcasting industry from the regulatory organization is imperative for the broadcasting industry to serve the public interest that has been historically defined by each county. For the Korean broadcasting industry, history of modern Korea taught us that the broadcasting regulatory organizations such as Korea Communications Commission(KCC) should be kept from any political influence for the industry to best serve the public. Recent controversies on the role of the CEO of KBS and the appointment of the CEO of YTN by the president of the country provide evidence that the independence of broadcasting in Korean society is a critical topic. This study examined the corporate structures of broadcasting industry and the political independence of the industry in relation to the changes in the concept of public interest and the role of broadcasting. It is critically important to investigate the political independence of broadcasting in Korea because the core argument of independence of broadcasting which is about the freedom of expression protected by the constitution is still contested in the country. For the purpose of collecting diverse perspectives on broadcasting, survey method was adopted in this study. Three groups Abstracts 697 of participants were recruited: reporters, experts in the field, and regular citizens. The result indicated that the independence of broadcasting was in the process of deterioration. Also, the participants of the study understood that it was impossible for the broadcasting to serve the public interest when the broadcasting was not free from the influence of regulatory institutions such as KCC.

  • PDF