• 제목/요약/키워드: mass-critical

검색결과 1,062건 처리시간 0.027초

Histopathologic Diagnosis of Pleural Metastasis of Renal Cell Carcinoma Using Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

  • Kang, Yeh-Rim;Jhun, Byung-Woo;Jeon, Kyeong-Man;Koh, Won-Jung;Suh, Gee-Young;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung;Han, Joung-Ho;Um, Sang-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • 제71권5호
    • /
    • pp.355-358
    • /
    • 2011
  • Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a useful, safe diagnostic modality for evaluating mediastinal and hilar lymphadenopathy. We report a 51-year-old male who presented with a left renal mass and multiple pleural masses without lung parenchymal lesions. The pleural masses were thought to be metastatic tumors or malignant mesothelioma. The patient underwent two percutaneous needle biopsies of the pleural mass, but the specimens were insufficient for a histopathological diagnosis. Because one pleural mass was adjacent to the right main bronchus, we decided to perform EBUS-TBNA for the pleural mass. As a result, sufficient core tissue was obtained with no complications, and the histopathological findings were consistent with metastatic papillary renal cell carcinoma. To our knowledge, this is the first case of using EBUS-TBNA for a pleural mass.

터널천단변위와 암석 또는 암반의 일축압축강도를 이용한 시공 중인 터널의 예비 안정성 평가 (The Pre-Evaluation of Stability during Tunnel Excavation using Unconfined Compression Strength of Intact Rock or Rock Mass and Crown Settlement Data)

  • 박영화;문홍득;하만복
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.27-32
    • /
    • 2015
  • PURPOSES : It is difficult to estimate tunnel stability because of lack of timely information during tunnel excavation. Tunnel deformability refers to the capacity of rock to strain under applied loads or unloads during tunnel excavation. This study was conducted to analyze a methods of pre-evaluation of stability during tunnel construction using the critical strain concept, which is applied to the results of tunnel settlement data and unconfined compression strength of intact rock or rock mass at the tunnel construction site. METHODS : Based on the critical strain concept, the pre-evaluation of stability of a tunnel was performed in the Daegu region, at a tunnel through andesite and granite rock. The critical strain concept is a method of predicting tunnel behavior from tunnel crown settlement data using the critical strain chart that is obtained from the relationship between strain and the unconfined compression strength of intact rock in a laboratory. RESULTS : In a pre-evaluation of stability of a tunnel, only actually measured crown settlement data is plotted on the lower position of the critical strain chart, to be compared with the total displacement of crown settlement, including precedent settlement and displacement data from before the settlement measurement. However, both cases show almost the same tunnel behavior. In an evaluation using rock mass instead of intact rock, the data for the rock mass strength is plotted on the lower portion of the critical strain chart, as a way to compare to the data for intact rock strength. CONCLUSIONS : From the results of the pre-evaluation of stability of the tunnel using the critical strain chart, we reaffirmed that it is possible to promptly evaluate the stability of a tunnel under construction. Moreover, this research shows that a safety evaluation using the actual instrumented crown settlement data with the unconfined compression strength of intact rock, rather than with the unconfined compression strength of a rock mass in the tunnel working face, is more conservative.

EVOLUTION OF A MASS ACCRETING PROTOSTAR OF ONE SOLAR MASS UNDER QUASI-HYDROSTATIC EQUILIBRIUM

  • Yun, Hong-Sik
    • 천문학회보
    • /
    • 제3권
    • /
    • pp.18-23
    • /
    • 1978
  • The evolutionary tracks of a protostar of one solar mass under quasi-hydrostatic equilibrium are computed with mass-accretion time scales of $10^3,\;10^4,\;10^5\;and\;10^6$ years, and their resulting behaviors in the H-R diagram are discussed. It is found that there exists a critical time scale of mass accretion, which reverses the course of their evolutionary tracks. A value of the critical time scale appears to lie between $10^3\;and\;10^4$ years. The physical cause for the presence of the critical time scale is discussed. Finally, it is proposed that star formation requires at least several $10^3$ years before any star is born out of dark dense interstellar clouds.

  • PDF

말단질량을 갖는 외팔 송수관의 고유치 분기와 플러터 모드 (Eigenvalue Branches and Flutter Modes of a Cantilevered Pipe Conveying Fluid and Having a Tip Mass)

  • 류봉조;류시웅;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.956-964
    • /
    • 2003
  • The paper describes the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration. The critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place. are definitely determined. Also, in the case of haying internal damping, the critical tip mass ratios, at which the consistency between eigenvalue braches and quasi-modes occurs. are thoroughly obtained.

종동력을 받는 티모센코 보의 안정성에 미치는 크랙과 끝질량의 영향 (Effects of Crack and Tip Mass on Stability of Timoshenko Beam Subjected to Follower Force)

  • 손인수;윤한익;안태수
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.99-107
    • /
    • 2008
  • In this paper, the stability of a cracked cantilever Timoshenko beam with a tip mass subjected to follower force is investigated. In addition, an analysis of the flutter instability(flutter critical follower force) and a critical natural frequency of a cracked cantilever Euler / Timoshenko beam with a tip mass subjected to a follower force is presented. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Therefore, the effect of the crack's intensity, location and a tip mass on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

가변형 임계노즐 유동에 관한 실험/수치해석적 연구 (Experimental / Computational Study of a variable Critical Nozzle Flow)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.167-173
    • /
    • 2003
  • For the measurement of mass flow rate at a wide range of operation conditions, it is required that the critical nozzle gas different diameters, since the mass flow rate through the critical nozzle depends on the nozzle supply conditions and the nozzle throat diameter. In the present study, both computational and experimental investigations are performed to explore the variable critical nozzle. Computational work using the 2-dimensional, axisymmetric, compressible Navier-Stokes equations are carried out to simulate the gas flow through variable critical nozzle. In experimnet, a cylinder with several different diameters is inserted into the critical nozzle to vary the nozzle throat diameter. Computational results are compared with the experimented ones. The computed results are in close agreement with experiment. It is found that the displacement and momentum thickness of variable critical nozzle are given as a function of Reynolds numbers. The discharge coefficient of the variable critical nozzle is predicted using an empirical equation.

  • PDF

Critical Mass Minimization of a Cylindrical Geometry Reactor by Two Group Diffusion Equation

  • Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.115-131
    • /
    • 1973
  • L.S. Pontryagin의 Maximum Principle과 수직방향을 고려하지 않은 2군 화산 방정식을 우라늄농축도 범위에 제한없이 원통형원자로의 최소 임계질량문제에 적용하였다. 핵연료 장전방법에 관한한 최적 원자로는 내심부와 외심부가 최소의 농축도를 갖고 중간영역은 최대의 농축도를 갖는 3-영역식 원자로인 것으로 밝혀졌다. 상기 3-영역식 원자로를 모델로 하여 임계조건을 유도하였으며, 또한 고리원자로를 예로하여 농축도를 여러가지로 변환시키면서 임계조건의 해를 구하는 수치해석을 수행하였다. 그 결과 여러가지 임계조건중 최소의 임계질량을 갖는 경우는 중간영역에서의 최대 농축도가 1.2%이고 내심부와 외심부에서의 농축도가 0.65%일때라는 것이 판명되었다.

  • PDF

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성 (Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.