• Title/Summary/Keyword: mass resolution

Search Result 605, Processing Time 0.025 seconds

Applications of Stochastic Process in the Quadrupole Ion traps

  • Chaharborj, Sarkhosh Seddighi;Kiai, Seyyed Mahmod Sadat;Arifina, Norihan Md;Gheisari, Yousof
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • The Brownian motion or Wiener process, as the physical model of the stochastic procedure, is observed as an indexed collection random variables. Stochastic procedure are quite influential on the confinement potential fluctuation in the quadrupole ion trap (QIT). Such effect is investigated for a high fractional mass resolution Δm/m spectrometry. A stochastic procedure like the Wiener or Brownian processes are potentially used in quadrupole ion traps (QIT). Issue examined are the stability diagrams for noise coefficient, η=0.07;0.14;0.28 as well as ion trajectories in real time for noise coefficient, η=0.14. The simulated results have been obtained with a high precision for the resolution of trapped ions. Furthermore, in the lower mass range, the impulse voltage including the stochastic potential can be considered quite suitable for the quadrupole ion trap with a higher mass resolution.

A High-Lateral Resolution MALDI Microprobe Imaging Mass Spectrometer Utilizing an Aspherical Singlet Lens

  • Han, Sang Yun;Kim, Hwan Jin;Ha, Tae Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.207-210
    • /
    • 2013
  • We report the construction of a MALDI imaging mass spectrometer equipped with a specially designed laser focusing lens, a compact aspherical singlet lens, that obtains a high-lateral imaging resolution in the microprobe mode. The lens is specially designed to focus the ionization laser (${\lambda}$ = 355 nm) down to a $1{\mu}m$ diameter with a long working distance of 34.5 mm. With the lens being perpendicular to the sample surface and sharing the optical axis with the ion path, the imaging mass spectrometer achieved an imaging resolution of as good as $5{\mu}m$ along with a high detection sensitivity of 100 fmol for peptides. The mass resolution was about 900 (m/${\Delta}m$) in the linear TOF mode. The high-resolution capability of this instrument will provide a new research opportunity for label-free imaging studies of various samples including tissues and biochips, even for the study at a single cell level in the future.

Algorithm to Improve Mass Spectral Resolution of Gas Chromatography Mass Spectrometer (가스크로마토그래피 질량분석기의 질량 스펙트럼 해상도 개선 알고리즘)

  • Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1232-1238
    • /
    • 2018
  • This paper proposes methods for improving mass spectral resolution for a gas chromatograph mass spectrometer. The slope signs of the 1st and 2nd fitting functions for the ion signal block of each mass index are obtained, and the unnecessary element signals in the ion signal block are removed. The spectrum can be obtained by obtaining the second-order fitting function of the reconstructed ion signal block using only the effective ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed methods, computer simulations were performed using the actual ion signals obtained from the GC-MS system under development. Simulation results show that the proposed method is valid.

Study on increasing the mass resolution in aerosol TOF mass spectrometer by using post focusing method (후집속 방법을 이용한 에어로졸 TOF 질량분석기의 질량분해능 향상 연구)

  • Kim, Dukhyeon;Yang, Kiho;Cha, Hyungki;Kim, Dohoon;Lee, Sang Chun
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.483-490
    • /
    • 2005
  • Mass resolution of the time of flight aerosol mass spectrometer for an aerosol component analysis depends on the initial direction and the initial energy of the ions. We have found that the shape of the optimum post focusing electric field is not linear. The maximum electric potential should be applied to the ions whose initial direction is 90 degree. To check on the post focusing effects, we have installed a laser ablation mass spectrometer. By using this LA-MS, we have found that the average energy distribution of the laser ablated ions is 8 eV. To establish the optimum mass resolution, a time delay and a high voltage are needed, and the results of the study show that 1500 nsec, and 3.7 kV are the optimum parameters for our system respectively. The isotope mass signals of copper show a good resolution.

Data Interpretation Methods for Petroleomics

  • Islam, Annana;Cho, Yun-Ju;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.63-67
    • /
    • 2012
  • The need of heavy and unconventional crude oil as an energy source is increasing day by day, so does the importance of petroleomics: the pursuit of detailed knowledge of heavy crude oil. Crude oil needs techniques with ultra-high resolving capabilities to resolve its complex characteristics. Therefore, ultra-high resolution mass spectrometry represented by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been successfully applied to the study of heavy and unconventional crude oils. The analysis of crude oil with high resolution mass spectrometry (FT-ICR MS) has pushed analysis to the limits of instrumental and methodological capabilities. Each high-resolution mass spectrum of crude oil may routinely contain over 50,000 peaks. To visualize and effectively study the large amount of data sets is not trivial. Therefore, data processing and visualization methods such as Kendrick mass defect and van Krevelen analyses and statistical analyses have played an important role. In this regard, it will not be an overstatement to say that the success of FT-ICR MS to the study of crude oil has been critically dependent on data processing methods. Therefore, this review offers introduction to peotroleomic data interpretation methods.

Characterization of Molecular Composition of Bacterial Melanin Isolated from Streptomyces glaucescens Using Ultra-High-Resolution FT-ICR Mass Spectrometry

  • Choi, Mira;Choi, A Young;Ahn, Soo-Yeon;Choi, Kwon-Young;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • In this study, the chemical composition of bacterial melanin isolated from the Streptomyces glaucescens strain was elucidated by ultra-high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Ultra-high-resolution mass profiles of the microbial melanin product were acquired using a 15 Tesla FT-ICR mass spectrometer in positive and negative ion modes via electrospray ionization to obtain more complete descriptions of the molecular compositions of melanin-derived organic constituents. A mass resolving power of 500,000 (at m/z 400) was achieved for all spectra while collecting 400 scans per sample with a 4 M transient. The results of this analysis revealed that the melanin pigment isolated from S. glaucescens predominantly exhibits CHON and CHO species, which belong to the proteins class of compounds, with the mean C/O and C/N ratios of 4.3 and 13.1, thus suggesting that the melanin could be eumelanin. This analytical approach could be utilized to investigate the molecular compositions of a variety of natural or synthetic melanins. The compositional features of melanins are important for understanding their formation mechanisms and physico-chemical properties.

Development and Application of a Software Tool for the Interpretation of Organic Mixtures' Spectra - Hydrogen Deuterium Exchange (STORM-HDX) to Interpret APPI HDX MS Spectra

  • Lee, Sunghyup;Cho, Yunju;Kim, Sunghwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.749-752
    • /
    • 2014
  • New software was developed for the assignment of elemental formulae based on high-resolution mass spectra and subsequent hydrogen/deuterium exchange data. Entire peaks in high-resolution mass spectra were grouped by their Kendrick mass defect values, and the weighted RMS deviations between theoretical and experimental values were used to determine elemental formulae. After this initial assignment, formulae containing deuterium atoms were sorted in order to interpret hydrogen/deuterium exchange spectra. The software was successfully applied to hydrogen/deuterium exchange spectra of resins and aromatic fractions from heavy crude oil.

Mass Selection using Reflectron in gas cluster experment. (Gas Cluster 실험에서 Reflectron을 이용한 Mass Selection)

  • 김성수
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.105-111
    • /
    • 2003
  • In order to find out whether a reflectron can be used as a mass selector in the gas cluster experiment, computer simulation are performed using the SIMION’ program. flight paths of energetic particles in the reflectron does not depend on their mass but energy. In the case of $(CO_2)n $ gas cluster, however, the position of clusters just after passing through the reflectron are spacially distributed with respect to the mass. The reason that the masses spacially distributes is the E/m ratio of clusters is constant, and it is the key reason that a reflectron can be used as a mass selector. Mass resolution does not depend on the cluster size and incident angle of clusters, and it is proportional to the incident position of clusters. This means that mass resolution can be enhanced by resizing the dimension of a reflectron. Therefore, it is concluded that a reflectron can be used as a mass selector with excellent mass resolution in the gas cluster experiment.

Identification of ML106 Phase 1 Metabolites in Human Liver Microsomes Using High-Resolution Quadrupole-Orbitrap Mass Spectrometry

  • Jo, Jun Hyeon;Nam, WoongShik;Kim, Sunjoo;Lee, Doohyun;Min, Kyung Hoon;Lee, Taeho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.7 no.3
    • /
    • pp.69-73
    • /
    • 2016
  • High-resolution quadrupole-Orbitrap mass spectrometry (HRMS), with high-resolution (> 10,000 at full-width at half-maximum) and accurate mass (< 5 ppm deviation) capabilities, plays an important role in the structural elucidation of drug metabolites in the pharmaceutical industry. ML106, a derivative of imidazobenzimidazole, decreased melanin content and tyrosinase activity in a dose-dependent manner. Here, we investigated the phase 1 metabolic pathway of ML106 using HRMS in human liver microsomes (HLMs) and recombinant cDNA-expressed cytochrome P450 (CYP). After the incubation of ML106 with pooled HLMs and recombinant cDNA-expressed CYP in the presence of NADPH, five phase 1 metabolites, including three mono-hydroxylated metabolites (M1-3) and two di-hydroxylated metabolites (M4 and M5), were investigated. The metabolite structures were postulated by the elucidation of protonated mass spectra using HRMS. The CYP isoforms related to the hydroxylation of ML106 were studied after incubation with recombinant cDNA-expressed CYP. Here, we identified the phase 1 metabolic pathway of ML106 induced by CYP in HLMs.

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.