Browse > Article
http://dx.doi.org/10.5478/MSL.2012.3.3.63

Data Interpretation Methods for Petroleomics  

Islam, Annana (Kyungpook National University, Department of Chemistry)
Cho, Yun-Ju (Kyungpook National University, Department of Chemistry)
Ahmed, Arif (Kyungpook National University, Department of Chemistry)
Kim, Sung-Hwan (Kyungpook National University, Department of Chemistry)
Publication Information
Mass Spectrometry Letters / v.3, no.3, 2012 , pp. 63-67 More about this Journal
Abstract
The need of heavy and unconventional crude oil as an energy source is increasing day by day, so does the importance of petroleomics: the pursuit of detailed knowledge of heavy crude oil. Crude oil needs techniques with ultra-high resolving capabilities to resolve its complex characteristics. Therefore, ultra-high resolution mass spectrometry represented by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been successfully applied to the study of heavy and unconventional crude oils. The analysis of crude oil with high resolution mass spectrometry (FT-ICR MS) has pushed analysis to the limits of instrumental and methodological capabilities. Each high-resolution mass spectrum of crude oil may routinely contain over 50,000 peaks. To visualize and effectively study the large amount of data sets is not trivial. Therefore, data processing and visualization methods such as Kendrick mass defect and van Krevelen analyses and statistical analyses have played an important role. In this regard, it will not be an overstatement to say that the success of FT-ICR MS to the study of crude oil has been critically dependent on data processing methods. Therefore, this review offers introduction to peotroleomic data interpretation methods.
Keywords
Mass spectrometry; Laser desorption; Petroleum; Data interpretation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hur, M.; Yeo, I.; Kim, E.; No, M. H.; Koh, J.; Cho, Y. J.; Lee, J. W.; Kim, S. Energy Fuels 2010, 24, 5524.   DOI   ScienceOn
2 Fernandez-Lima, F. A.; Becker, C.; McKenna, A. M.; Rodgers, R. P.; Marshall, A. G.; Russell, D. H. Anal. Chem. 2009, 81, 9941.   DOI   ScienceOn
3 Ahmed, A.; Cho, Y. J.; No, M.-H.; Koh, J.; Tomczyk, N.; Giles, K.; Yoo, J. S.; Kim, S. Anal. Chem. 2010, 83, 77.
4 Rodgers, R. P.; Hendrickson, C. L.; Emmett, M. R.; Marshall, A. G.; Greaney, M.; Qian, K. Canadian J. of Chem. 2001, 79, 546.   DOI   ScienceOn
5 Blakney, G. T.; Hendrickson, C. L.; Marshall, A. G. Int. J. Mass Spec. 2011, 306, 246.   DOI   ScienceOn
6 Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 5336.   DOI   ScienceOn
7 Hughey, C. A.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Anal. Chem. 2001, 73, 4676.   DOI   ScienceOn
8 Gorshkov, M. V.; Nikolaev, E. N. Int. J. Mass Spec. Ion Proc. 1993, 125, 1.   DOI   ScienceOn
9 Kazazic, S.; Zhang, H.-M.; Schaub, T. M.; Emmett, M. R.; Hendrickson, C. L.; Blakney, G. T.; Marshall, A. G. J. Am. Soc. Mass Spec. 2010, 21, 550.   DOI   ScienceOn
10 Kendrick, E. Anal. Chem. 1963, 35, 2146.   DOI
11 Roach, P. J.; Laskin, J.; Laskin, A. Anal. Chem. 2011, 83, 4924.   DOI   ScienceOn
12 van Krevelen, D. Fuel 1950, 269.
13 Bae, E.; Na, J. G.; Chung, S. H.; Kim, H. S.; Kim, S. Energy Fuels 2010, 24, 2563.   DOI   ScienceOn
14 Kim, Y. H.; Kim, S. J. Am. Soc. Mass Spec. 2010, 21, 386.   DOI   ScienceOn
15 Cho, Y.; Kim, Y. H.; Kim, S. Anal. Chem. 2011, 83, 6068.   DOI   ScienceOn
16 Purcell, J. M.; Merdrignac, I.; Rodgers, R. P.; Marshall, A. G.; Gauthier, T.; Guibard, I. Energy Fuels 2010, 24, 2257.   DOI   ScienceOn
17 Hsu, C. S.; Lobodin, V. V.; Rodgers, R. P.; McKenna, A. M.; Marshall, A. G. Energy Fuels 2011, 25, 2174.   DOI   ScienceOn
18 Lobodin, V. V.; Marshall, A. G.; Hsu, C. S. Anal. Chem. 2012, 84, 3410.   DOI   ScienceOn
19 Hur, M.; Yeo, I.; Park, E.; Kim, Y. H.; Yoo, J.; Kim, E.; No, M. H.; Koh, J.; Kim, S. Anal. Chem. 2010, 82, 211.   DOI   ScienceOn
20 Barrow, M. P. Biofuels 2010, 1, 651.   DOI   ScienceOn
21 Headley, J. V.; Peru, K. M.; Barrow, M. P. Mass Spectrom. Rev. 2009, 28, 121.   DOI   ScienceOn
22 Ortiz-Cruz, A.; Rodriguez, E.; Ibarra-Valdez, C.; Alvarez-Ramirez, J. Energy Policy 2012, 41, 365.   DOI   ScienceOn
23 Hsieh, M.; Philp, R. P.; del Rio, J. C. Org. Geochem. 2000, 31, 1581.   DOI   ScienceOn
24 Chiaberge, S.; Fiorani, T.; Savoini, A.; Bionda, A.; Ramello, S.; Pastori, M.; Cesti, P. Fuel Proc. Tech.
25 Yassaa, N.; Meklati, B. Y.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P. Atm. Environ. 2001, 35, 787.   DOI   ScienceOn
26 Hsu, C. S.; Hendrickson, C. L.; Rodgers, R. P.; McKenna, A. M.; Marshall, A. G. J. Mass Spec. 2011, 46, 337.   DOI   ScienceOn
27 Rodgers, R. P.; McKenna A. M. Anal. Chem. 2011, 83, 4665.   DOI   ScienceOn
28 Marshall, A. G.; Rodgers, R. P. Proc. Natl. Acad. Sci.2008, 105, 18090.   DOI   ScienceOn
29 Kujawinski, E. B. Environ. Foren. 2002, 3, 207.   DOI
30 Miyabayashi, K.; Naito, Y.; Tsujimoto, K.; Miyake, M. Int. J. Mass Spec. 2004, 235, 49.   DOI   ScienceOn
31 Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Mass Spec. Rev. 1998, 17, 1.   DOI
32 Niedner-Schatteburg, G.; Silha, J.; Schindler, T.; Bondybey, V. E. Chem. Phys. Lett. 1991, 187, 60.   DOI   ScienceOn
33 Marshall, A. G.; Rodgers, R. P. Acc. Chem. Res. 2004, 37, 53.   DOI   ScienceOn
34 Xian, F.; Corilo, Y. E.; Hendrickson, C. L.; Marshall, A. G. Int.J. Mass Spec. 2012, 325-327, 67.   DOI   ScienceOn
35 Carlsohn, E.; Ångström, J.; Emmett, M. R.; Marshall, A. G.; Nilsson, C. L. Int. J. Mass Spec. 2004, 234, 137.   DOI   ScienceOn
36 Dahlquist, E.; Thorin, E.; Yan, J. Int. J. of Energy Re. 2007, 31, 1226.   DOI   ScienceOn
37 Schaefer, C.; Weber, C.; Voss, A. Energy 2003, 28, 411.   DOI   ScienceOn
38 Klass, D. L. Energy Policy 2003, 31, 353.   DOI   ScienceOn
39 Thoma, M. Energy Econ. 2004, 26, 463.   DOI   ScienceOn
40 Szklo, A.; Schaeffer, R. Energy 2006, 31, 2513.   DOI   ScienceOn