• Title/Summary/Keyword: mass propagation

Search Result 467, Processing Time 0.023 seconds

Effects of Carbon and Nitrogen Sources on the Shoot Formation in bioreator culture of Scrophularia buergeriana Miquel (현삼에서 탄소원과 질소원의 종류와 농도가 기내 식물체 분화에 미치는 영향)

  • Lim, Wan-Sang;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2000
  • To determine the proper carbon and nitrogen sources and their proper levels for mass micro propagation of Scrophularia buergeriana Miquel, tonic and curing cough experiment were applied and a method for mass cultivation by using bioreactors (2.5 L) was expinined. Proper ratio of $NH_4NO_3\;:\;$KNO_3$ was 413 mg/L : 1900 mg/L for multiple shoot production. Sucrose was more effective than glucose or fractose as carbon source and 3% concentration was good for shoot formation. Total nitrogen was not detected after six weeks both in 500 ml flask and bioreactor culture. Sucrose was decreased sharply after two weeks and there was no sucrose left after three weeks both in 500 ml flask and bioreactor culture. The stirrer in bioreactor caused shear stress to shoots severely. The sphere type bioreactor was better than the cylinder type and removal of inner loop in sphere type was more effective to avoid shear stress.

  • PDF

In vitro Mass Propagation of Ardisia pusilla DC. (산호수 (Ardisia pusilla DC.)의 기내 대량번식)

  • Kang Gwan-Ho;Oh Owel-Sun;Goo Dae-Hoe;Eun Jong-Seon;Kim Hyung-Moo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.281-285
    • /
    • 2005
  • To establish the mass proliferation system of Ardisia pusilla DC, the shoot tips of Ardisia pusilla DC were cultured on the MS and half-strength MS medium supplemented with $0{\sim}5.0$ mg/L BA or $0{\sim}0.5$ mg/L thidiazuron(TDZ), respectively. A few multiple shoot formation observed when the shoots were cultured on MS medium containing TDZ. However, the frequency of multiple shoot formation was reached up to 82.4%, when the shoots were cultured on half-strength MS medium supplemented with 0.5 mg/L BA. Also the number of shoot per explant was 7.1. To promote rooting from multiple shoot, newly formed shoots were transferred to half-strength MS medium containing 0.5 mg/L IBA or 0.5 mg/L NAA, respectively. Regenerated plantlets were grown to normal mature plants in soil.

Mass Propagation of Plug Seedling using Stem Cutting and Their Tuber Yield in Potato

  • Park, Yang-Mun;Song, Chang-Khil;Kang, Bong-Kyoon;Kim, Dong-Woo;Ko, Dong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.201-206
    • /
    • 1999
  • For the mass production of plug seedlings in cultivar ‘Dejima’ potato (Solanum tuberosum L.) the optimal apical cutting diameter for rooting and rapid multiplication of stem cuttings in hydroponics were determined. In addition, the best planting date was predicted to increase tuber yield of plug seedlings at fall cropping in Cheju-Do, Korea. Days to initial rooting decreased as the cutting diameter was reduced. Plant height, leaf number, root length and root weight per plant were favorable as the cutting diameter was small. The ideal cutting diameter was 1-2 mm in this experiment. In the hydroponic cultures, the Japanese standard (JS) nutrient solution was the most effective for multiplication of stem cuttings. It was able to propagate more than 20 times a month from a single mother plant. Viability of plants, which were derived from plug seedlings using stem cuttings, was excellent when transplanted to the field. The number of tubers and tuber yield in both of the plug seedlings and seed potato planting plots were high when planted on 25 August. The number and yield were reduced when planted on 15 August, 5 September and 15 September. The degree of decrease of tuber yield in the plug seedling planting plot however, was lower than that of seed potatoes when the planting date was late. In the case of small tubers (under 30 g), the number of tubers and tuber yield were evidently increased in the seed potato tuber planting plot; the yield of large tuber (over 80g) in the plug seedling planting plot was higher than that of the seed potato. The total tuber yield per plant in the plug seedling planting plot was less than that of the seed potato; therefore, in order to increase tuber yield it was necessary to increase field plant density.

  • PDF

Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants (추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구)

  • Seo, Young-Duk;Kim, Gun-Woo;Hong, Bum-Suk;Kim, Jin-Ho;Chung, Suk-Ho;Yoh, Jai-Ick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression

  • Zhang, Bo;Li, Shucai;Yang, Xueying;Xia, Kaiwen;Liu, Jiyang;Guo, Shuai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2019
  • Crossing (X-type) flaws are commonly encountered in rock mass. However, the crack coalescence and failure mechanisms of rock mass with X-type flaws remain unclear. In this study, we investigate the compressive failure process of rock-like specimens containing two X-type flaws aligned in the loading direction. For comparison purposes, compressive failure behavior of specimens containing two aligned single flaws is also studied. By examining the crack coalescence behavior, two characteristics for the aligned X-type flaws under uniaxial compression are revealed. The flaws tend to coalesce by cracks emanating from flaw tips along a potential path that is parallel to the maximum compressive stress direction. The flaws are more likely to coalesce along the coalescence path linked by flaw tips with greater maximum circumferential stress if there are several potential coalescence paths almost parallel to the maximum compressive stress direction. In addition, we find that some of the specimens containing two aligned X-type flaws exhibit higher strengths than that of the specimens containing two single parallel flaws. The two underlying reasons that may influence the strengths of specimens containing two aligned X-type flaws are the values of flaw tips maximum circumferential stresses and maximum shear stresses, as well as the shear crack propagation tendencies of some secondary flaws. The research reported here provides increased understanding of the fundamental nature of rock/rock-like material failure in uniaxial compression.

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

Current Status of Plasmodiophora brassicae Researches in Korea

  • Kim, Hong Gi;Lim, Yong Pyo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • Clubroot disease is caused by the soil-born obligate plant pathogen Plasmodiophora brassicae. This pathogen can infect all cruciferous vegetables and oil crops, including Brassica rapa, B. oleracea, B. napus, and other Brassica species. Clubroot disease is now considered to be a major problem in Chinese cabbage production in China, Korea, and Japan. We collected several hundreds of P. brassicae infected galls from Korea, and isolated the single spore from the collection. For establishment of novel isolation, and mass-propagation methods for singe spore isolates of P. brassicae pathogen, we developed new filtration method using both cellulose nitrate filter and syringe filter. Accurate detection of P. brassicae pathogen in the field was done by using real-time PCR in the potential infested soil. When we tested the different pathogenicity on commercial Chinese cabbage varieties, P. brassicae from collected galls showed various morphological patterns about clubroot symptom on roots. To date, 8 CR loci have been identified in the B. rapa genome using the quantitative trait loci (QTL) mapping approach, with different resistant sources and isolates. We are trying to develop the molecular marker systems for detect all 8 CR resistant genes. Especially for the study on the interaction between pathogens and CR loci which are not well understood until now, genome wide association studies are doing using the sequenced inbred lines of Chinese cabbage to detect the novel CR genes.

  • PDF

Factors Affecting on Shoot Formation in Bioreactor Culture of Rehmannia glutinosa Lib. (생물반응기(生物反應器)에서 지황(地黃)의 신초(新梢) 형성에 관여하는 요인(要因))

  • Park, Ju-Hyun;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.2
    • /
    • pp.123-128
    • /
    • 2000
  • This study was carried out to determine factors affecting on the mass propagation of Rehmannia glutinosa seedlings in bioreactor culture. Air-lift type bioreactor was more compatible to shoot formation than stirrer type. Fifty grams(90 stem explants) of inoculum in 1.5L medium was placed into 2.5L bioreactor with aeration rate of 0.5 v.v.m., which was proper for effective shoot formation. Adding MES as pH buffer to culture medium increased the numbers of shoot formation. Adding 5g/l of anti-vitrifying agent into culture medium was highly effective for diminishing the rate of vitrification in shoots formed.

  • PDF

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.