• 제목/요약/키워드: mass optimization

검색결과 711건 처리시간 0.025초

유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계 (Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control)

  • 이민우;박장현
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.

고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화 (Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU)

  • 김선창;전동순;김영률
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화 (Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter)

  • 김용연
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

절삭력 최적화를 이용한 금형의 생산성 및 표면조도 향상에 관한 연구 (A Study on the Improvement of Productivity and Surface Roughness in Mold Machining using the Optimization of Cutting Force)

  • 전언찬;이수용;이우현;김동후;전정도
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.824-829
    • /
    • 2011
  • The mold is widely used for mass production in present industry. Also, product cycle time is faster, for this request, high productivity improvement in mold machining is required. And, In case of mold manufacturing company, the delivery shortening is required to quickly manufacture new product. Therefore, we aim for the delivery shortening though the method of machining time shortening in mold machining. On this paper, first, we made the NC-code of Insert die-casting as the object model using PowerMill. And then, analyzed cutting force by Toolpath in Insert mold machining using Production Module of Advantedge which is cutting force analysis program. After that, we came up with the optimum conditions of productivity improvement throughout the analysis result of before and after optimization of cutting force, machining time variation, and surface roughness by changing min tangential force to 80, 85, 90% of max tangential force.

과도시간 감소를 위한 전자기 엔진밸브 액츄에이터 형상 최적 설계 (Design Optimization of Linear Actuator for Fast Response of Electromagnetic Engine Valve)

  • 김진호;박상신
    • 한국자기학회지
    • /
    • 제20권1호
    • /
    • pp.24-27
    • /
    • 2010
  • 솔레노이드 전자기 엔진 밸브 액츄에이터는 현재의 내연 연소 엔진의 가변 밸브 타이밍에 가장 적합하고 진보된 장치이다. 하지만 솔레노이드 전자기 액츄에이터는 전력소모가 크다는 단점을 가지고 있다. 따라서 전력소모가 작은 가변 밸브 타이밍을 구현하기 위해 영구자석을 활용한 새로운 전자기 엔진 밸브 액츄에이터를 제안한다. 이 연구에서는 엔진 밸브의 과도운동 시간의 최소화를 통해 엔진의 속도를 극대화하기 위하여 새롭게 제안한 액츄에이터의 형상을 최적 설계하였다. 최적화를 위해 유전자 알고리즘을 사용하고 Matlab과 Maxwell을 활용하여 전역 최적화 시뮬레이션을 수행하였다.

Optimization of three small-scale solar membrane distillation desalination systems

  • Chang, Hsuan;Hung, Chen-Yu;Chang, Cheng-Liang;Cheng, Tung-Wen;Ho, Chii-Dong
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.451-476
    • /
    • 2015
  • Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving the energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum-cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo steady state approach for equipment sizing and the dynamic optimization using overall system mathematical models. The s-SMDDS employing three MD configurations, including the air gap (AGMD), direct contact (DCMD) and vacuum (VMD) types, are optimized. The membrane area of each system is $11.5m^2$. The AGMD system operated for 500 kg/day water production rate gives the lowest unit cost of $5.92/m^3$. The performance ratio and recovery ratio are 0.85 and 4.07%, respectively. For the commercial membrane employed in this study, the increase of membrane mass transfer coefficient up to two times is beneficial for cost reduction and the reduction of membrane heat transfer coefficient only affects the cost of the DCMD system.

디지털 영상 계측을 위한 이미지 최적화 연구 (A Study on the Image Optimization for Digital Vision Measurement)

  • 김광염;윤효관;김창용;임성빈;최창호;이승도
    • 터널과지하공간
    • /
    • 제20권6호
    • /
    • pp.421-433
    • /
    • 2010
  • 암반면 평가를 위한 디지털 영상 계측 시 획득된 영상정보는 조명의 광량과 조명색 그리고 카메라의 촬영조건 등에 따라 달라지며, 왜곡된 영상정보는 객관적인 암반 평가를 어렵게 하는 주요한 원인이 된다. 본 연구에서는 다양한 설정 조건 하에서 획득된 디지털 영상정보의 색보정을 통해 자연광 상태에서의 고유한 영상정보로 복원하기 위한 실험 및 분석을 수행하였으며, 최종적으로 영상정보 최적화를 위한 조명 조건 및 카메라 설정 방안을 제시하였다.

압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석 (Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System)

  • 임경채;조동수;박우철;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.

경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어 (Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권3호
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.