• Title/Summary/Keyword: masonry wall structures

Search Result 78, Processing Time 0.025 seconds

Analysis of North Korea's Residential Environment Satisfaction According to Construction Method (건축공법에 따른 북한의 주거환경 만족도 분석 연구)

  • Kim, Eun-Young;Baek, Cheong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.222-223
    • /
    • 2020
  • Recently, as the era of economic cooperation on the Korean Peninsula approaches, the role of the building sector, such as humanitarian reorganization of North Korean housing, is increasing. The purpose of this study is to find out the current location of North Korean housing standards through the North Korean Housing Survey. For the survey, a survey was conducted through 79 North Korean defectors. The main construction methods of North Korean housing are reinforced concrete, steel framed, wooden framed, masonry, and reinforced concrete walled and prefabricated. The residential environment satisfaction items consist of durability, waterproof, heating, ventilation, heat insulation, air tightness, mining, soundproofing, disaster safety, fire safety, and crime prevention. The result is as follows. The housing construction method in North Korea, which lived at that time, consisted of 21 people (30.88%) of reinforced concrete frames, 18 people (26.47%) of wooden frames, 17 people (25%) of masonry walls, 5 people of prefabricated structures (7.35%), and reinforced concrete. Two people (2.94%) were walled. Among these, the wooden frame type had the lowest satisfaction level for each item, and the reinforced concrete had a high level of dissatisfaction in the items of heating, confidentiality, and disaster safety, and the other item had a high level of satisfaction. The masonry wall type has a relatively high satisfaction level in terms of insulation, confidentiality, mining, and disaster safety.

  • PDF

Analysis of Damping Performance of Hysteretic Dampers of Buckling restrained Braced Type According to eccentricity of school buildings with Torsional irregularities (비틀림 비정형을 가지는 학교건물의 편심율에 따른 좌굴방지가새형 이력댐퍼의 제진성능분석)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.37-44
    • /
    • 2023
  • In the case of a school building, even though it is a regular structure in terms of plan shape, if the masonry infill wall acts as a lateral load resisting element, it can be determined as a torsionally irregular building. As a result, the strength and ductility of the structure are reduced, which may cause additional earthquake damage to the structure. Therefore, in this study, a structure similar to a school building with torsional irregularity was selected as an example structure and the damping performance of the PC-BRB was analyzed by adjusting the eccentricity according to the amount of masonry infilled wall. As a result of nonlinear dynamic analysis after seismic reinforcement, the torsional irregularity of each floor was reduced compared to before reinforcement, and the beams and column members of the collapse level satisfied the performance level due to the reduction of shear force and the reinforcement of stiffness. The energy dissipation of PC-BRB was similar in the REC-10 ~ REC-20 analytical models with an eccentricity of 20% or less. REC-25 with an eccentricity of 25% was the largest, and it is judged that it is effective to combine and apply PC-BRB when it has an eccentricity of 25% or more to control the torsional behavior.

Use of copper shape memory alloys in retrofitting historical monuments

  • El-Borgi, S.;Neifar, M.;Jabeur, M. Ben;Cherif, D.;Smaoui, H.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.247-259
    • /
    • 2008
  • The potential use of Cu-based shape memory alloys (SMA) in retrofitting historical monuments is investigated in this paper. This study is part of the ongoing work conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The present investigation consists of a finite element simulation, as a preliminary to an experimental study where a cantilever masonry wall, representing a part of a historical monument, is subjected to monotonic and quasi-static cyclic loadings around a horizontal axis at the base level. The wall was retrofitted with an array of copper SMA wires with different cross-sectional areas. A new model is proposed for heat-treated copper SMAs and is validated based on published experimental results. A series of nonlinear finite element analyses are then performed on the wall for the purpose of assessing the SMA device retrofitting capabilities. Simulation results show an improvement of the wall response for the case of monotonic and quasi-static cyclic loadings.

Seismic performance of retrofitted URM walls with diagonal and vertical steel strips

  • Darbhanzi, Abbas;Marefat, Mohammad S.;Khanmohammadi, Mohammad;Moradimanesh, Amin;Zare, Hamid
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.449-458
    • /
    • 2018
  • Earthquakes have shown the vulnerability of unreinforced masonry (URM) structures. The aim of this research is to study a technique for in-plane seismic retrofitting of URM walls in which both diagonal and vertical steel strips are added to a single side of a URM wall. Specimens have been tested under quasi-static cyclic lateral load in combination with constant vertical load. The tests show that vertical and diagonal strips cause a significant increase in seismic capacity in terms of both strength (about 200%) and displacement at maximum (about 20%). Furthermore, this technique caused the failure modes of URM walls were influenced.

The investigation of seismic performance of existing RC buildings with and without infill walls

  • Dilmac, Hakan;Ulutas, Hakan;Tekeli, Hamide;Demir, Fuat
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.439-447
    • /
    • 2018
  • One of the important factors is the infill walls in the change of the structural rigidity, ductility, dynamic and static characteristics of the structures. The infill walls are not generally included in numerical analysis of reinforced concrete (RC) structural system due to lack of suitable theory and the difficulty of calculating the recommended models. In seismic regions worldwide, the residential structures are generally RC buildings with infill wall. Therefore, understanding the contribution of the infill walls to seismic performance of buildings may have a vital importance. This paper investigates the effects of infill walls on seismic performance of the existing RC residential buildings by considering requirements of the Turkish Earthquake Code (TEC). Seismic performance levels of residential RC buildings with and without walls in high-hazard zones were determined according to the nonlinear procedure given in the code. Pushover curves were obtained by considering the effect of masonry infill walls on seismic performance of RC buildings. The analysis results showed that the infill walls beneficially effected to the rigidity, roof displacements and seismic performance of the building.

"Buildings Without Walls:" A Tectonic Case for Two "First" Skyscrapers

  • Leslie, Thomas
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • "A practical architect might not unnaturally conceive the idea of erecting a vast edifice whose frame should be entirely of iron, and clothing the frame--preserving it--by means of a casing of stone…that shell must be regarded only as an envelope, having no function other than supporting itself..." --Viollet-le-Duc, 1868. Viollet-le-Duc's recipe for an encased iron frame foresaw the separation of structural and enclosing functions into discrete systems. This separation is an essential characteristic of skyscrapers today, but at the time of his writing cast iron's brittle nature meant that iron frames could not, on their own, resist lateral forces in tall structures. Instead, tall buildings had to be braced with masonry shear walls, which often also served as environmental enclosure. The commercial availability of steel after the 1880s allowed for self-braced metal frames while parallel advances in glass and terra cotta allowed exterior walls to achieve vanishingly thin proportions. Two Chicago buildings by D.H. Burnham & Co. were the first to match a frame "entirely of iron" with an "envelope" supporting only itself. The Reliance Building (1895) was the first of these, but the Fisher Building (1896) more fully exploited this new constructive typology, eschewing brick entirely, to become the first "building without walls," a break with millennia of tall construction reliant upon masonry

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.

Experimental vs. theoretical out-of-plane seismic response of URM infill walls in RC frames

  • Verderame, Gerardo M.;Ricci, Paolo;Di Domenico, Mariano
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.677-691
    • /
    • 2019
  • In recent years, interest is growing in the engineering community on the experimental assessment and the theoretical prediction of the out-of-plane (OOP) seismic response of unreinforced masonry (URM) infills, which are widespread in Reinforced Concrete (RC) buildings in Europe and in the Mediterranean area. In the literature, some mechanical-based models for the prediction of the entire OOP force-displacement response have been formulated and proposed. However, the small number of experimental tests currently available has not allowed, up to current times, a robust and reliable evaluation of the predictive capacity of such response models. To enrich the currently available experimental database, six pure OOP tests on URM infills in RC frames were carried out at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. Test specimens were built with the same materials and were different only for the thickness of the infill walls and for the number of their edges mortared to the confining elements of the RC frames. In this paper, the results of these experimental tests are briefly recalled. The main aim of this study is comparing the experimental response of test specimens with the prediction of mechanical models presented in the literature, in order to assess their effectiveness and contribute to the definition of a robust and reliable model for the evaluation of the OOP seismic response of URM infill walls.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.