• 제목/요약/키워드: martensitic steels

검색결과 88건 처리시간 0.022초

Effects of Y and Ti addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Qi, Min;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1365-1372
    • /
    • 2019
  • The effects of Y and Ti on the microstructure stability and tensile properties of the reduced activation ferritic/martensitic steel have been investigated. The addition of Y and Ti affected the prior austenite grain size due to the pinning of the inclusions. Ti addition of 0.008 wt% to the steel was intended to promote the precipitation of nano-sized carbides with a high resistance to coarsening. 8Ti14Y exhibited a higher yield strength and a lower DBTT than the other alloys due to the fine grain size and additional precipitation hardening by (Ti, Ta)-rich MX. After thermal exposure at $550^{\circ}C$ for 1500 h, yield strength was dropped significantly in exposed 0Ti13Y. On the contrary, a lower reduction of YS was observed in 8Ti14Y. The $M_{23}C_6$ in 0Ti13Y and 8Ti14Y and MX in 25Ti14Y and 39Ti15Y coarsened seriously during ageing, which could be responsible for the reduction of the tensile properties of alloys.

플라즈마 산질화처리된 AISI 420 마르텐사이트 스테인레스 강재의 표면 경도 및 부식 거동 (Surface Hardness and Corrosion Behavior of AISI 420 Martensitic Stainless Steels Treated by Plasma Oxy-Nitriding Processing)

  • 김진한;이광민
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.309-314
    • /
    • 2023
  • This study aimed to address the limitations of traditional plasma nitriding methods by implementing a short-term plasma oxy-nitriding treatment on the surface of AISI 420 martensitic stainless steel. This treatment involved the sequential formation of nitride and oxide layers, to enhance surface hardness and corrosion resistance, respectively. The process resulted in the formation of a 20 ㎛-thick nitride layer and a 3 ㎛-thick oxide layer on the steel surface. Initially, the hardness increased by 2.2 times after nitriding, followed by a subsequent decrease of approximately 31 % after oxidation. While the nitriding process reduced corrosion resistance, the subsequent oxidation process led to the formation of a passive oxide film, effectively resolving this issue. The pitting corrosion of the oxide passive film started at 82.6 mVssc, providing better corrosion resistance characteristics than the nitride layer. Consequently, the trade-off between surface hardness and corrosion resistance in plasma oxy-nitrided AISI 420 martensitic stainless steel is anticipated to be recognized as an innovative and comprehensive surface treatment process for biomedical components.

440A 강의 입계부식에 미치는 합금원소와 열처리의 영향(II) (The Effect of Alloying Elements and Heat Treatment on the Intergranular Corrosion of 440A Martensitic Stainless Steel(II))

  • 김영철;정병호;강창룡
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.52-57
    • /
    • 2011
  • 440A martensitic stainless steels which were modified with reduced carbon content(~0.5wt.%) and addition of small amount of vanadium, tungsten and molybdenum 0.4wt.%, 0.4wt.% and 0.68wt.% respectively were manufactured. Effects of alloying elements and tempering temperatures on the intergranular corrosion were investigated through the method of DL-EPR(Double-electrochemical potentiodynamic reactivation). It was thought that the highest DOS(Degree of sensitization) of specimens was obtained at the tempering temperature of $450^{\circ}C$ regardless of types of alloy because of the precipitation of Cr7C3. Addition of vanadium lowered DOS a little above the tempering temperature of $550^{\circ}C$. It was considered to be effected by precipitation of VC carbides. Intergranular corrosion was influenced more by tempering temperature than by alloying elements of V, W and Mo.

오스테나이트계 고크롬강의 가스질화거동에 관한 연구 (GasNitriding Bechavior Austenitic High Cr Steels)

  • 김영희;김도경
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.258-267
    • /
    • 1998
  • For the purpose of investigating the growth characteristics and composition of nitrides, gas nitridings of the austenitic stainless steel, STR 36 heat resisting steel and martensitic stainless steel are investigated at the temperature ranges between $500^{\circ}C$ and $675^{\circ}C$ for 5hours under the $75%NH_3+5%CO_2+20%$Air gas atmosphere. When gas nitriding the austentic stainless steel and STR 36 heat resisting alloy, the abnormal growth behavior of compound layer deviating from the conventional diffusion law with increasing temperature appears, while the compound layer of martensitic stainless steel shows the normal diffusional growth behavior. From the examination of microstructure, X-ray diffraction and hardness test, it is concluded that the abnormal growth behavior of compound layer with increasing temperature induces from the formation and dissolution of CrN and ${\gamma}^{\prime}-Fe_4N$ at the nitriding temperature ranges of $600{\sim}650^{\circ}C$.

  • PDF

붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가 (Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging)

  • 박현균;김남규;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

제강 및 열처리 조건이 압력용기강의 피로 및 파괴특성에 미치는 영향 (Influence of Steel-making Process and Heat-treatment Temperature on the Fatigue and Fracture Properties of Pressure Vessel Steels)

  • 고승기;나의균;백태현;박승주;원삼용;이성우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as vacuum degassing(VD) and electro-slag remelting(ESR) methods. After the steel-making process, they were normalized at $955^{\circ}C$, quenched at $843^{\circ}C$, and finally tempered at $550^{\circ}C$ or $450^{\circ}C$, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-cycle fatigue(LCF) tests, fatigue crack growth rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process.

  • PDF

9-12% Cr강의 용접부에 미치는 δ-ferrite의 영향 (The Effects of δ-ferrite on Weldment of 9-12% Cr Steels)

  • 안성용;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.8-16
    • /
    • 2013
  • As the energy consumption increases rapidly, power generation needs the high energy efficiency continuously. To achieve the high efficiency of power generation, the materials used have to endure the higher temperature and pressure. The 9-12%Cr steels possess good mechanical properties, corrosion resistance, and creep strength in high temperature due to high Cr contents. Therefore, the 9-12%Cr steels are widely used for the high-temperature components in power plants. Even though the steels usually have a fully martensitic microstructure, they are susceptible to the formation of ${\delta}$-ferrite specifically during the welding process. The formation of ${\delta}$-ferrite has several detrimental effects on creep, ductility and toughness. Therefore, it is necessary to avoid its formation. As the volume fraction of ${\delta}$-ferrite is less than 2% in microstructure, it has the isolated island morphology and causes no significant degradation on mechanical properties. For ${\delta}$-ferrite above 2%, it has a polygonal shape affecting the detrimental influence on the mechanical properties. The formation of ${\delta}$-ferrite is affected by two factors: a chemical composition and a welding heat input. The most effective ways to get a fully martensite microstructure are to reduce the chromium equivalent less than 13.5, to keep the difference between the chromium and nickel equivalent less than 8, and to reduce the welding heat input.

질소침투 열처리한 STS 410 및 410L 마르텐사이트계 스테인리스강의 템퍼링에 의한 조직변화 (Microstructural Changes during Tempering Treatment of Nitrogen-permeated STS 410 and 410L Martensitic Stainless Steels)

  • 이해정;공정현;이해우;유대경;강창룡;성장현
    • 열처리공학회지
    • /
    • 제20권2호
    • /
    • pp.84-93
    • /
    • 2007
  • Microstructural changes during tempering at the temperature range of $300^{\circ}C{\sim}700^{\circ}C$ for the nitrogen-permeated STS 410 and 410L martensitic stainless steels has been investigated. After nitrogen permeation at temperature between 1050 and $1150^{\circ}C$, the surface layer appeared fine $Cr_2N$ of square and rod types in the martensite matrices. Hardness of the nitrogen-permeated surface layer represented 680Hv and 625Hv, respectively, for 410 and 410L steels. It is considered that the fine homogeneously dispersive effect of precipitates by nitrogen caused the increased hardness. Due to the counter current effect of carbon from interior to surface during nitrogen diffusion from surface to interior, the 0.1%C alloyed 410 steel showed the low nitrogen content of 0.025% compared with 0.045% of 410L steel at the distance of $100{\mu}m$ from the surface. Tempering of nitrogen-alloyed 410 and 410L showed the maximum hardness at $450^{\circ}C$. This maximum hardness was considered to be the secondary hardening effect of very fine carbide and nitride. The decrease in hardness at $700^{\circ}C$ was the softening effect of the matrix due to the precipitation of many needle-shaped $Cr_2N$ for 410 steel and the precipitation of coarse nitride of $Cr_2N$ in line with the spherical precipitates with directionality for 410L steel. For 410 steel, the corrosion resistance of nitrogen permeated surface in the solution of 1 N $H_2SO_4$ were nearly unchanged, however the superior corrosion resistance was obtained for nitrogen permeated 410L steel compared to the solution annealed condition.

베이나이트 - 마르텐사이트 복합조직강에서 미세조직이 벽개파괴강도에 미치는 영향 (Effect of Microstructures on Cleavage Fracture Strength in Bainitic and Martensitic Steels)

  • 이창훈
    • 열처리공학회지
    • /
    • 제27권3호
    • /
    • pp.133-140
    • /
    • 2014
  • Cleavage fracture behaviors were investigated in Ni-Mo-Cr steels with mixed microstructure of lower bainite and martensite. As the size of carbide decreased, the cleavage fracture strength increased, which was independent of the sizes of grain and packet. The measured cleavage fracture strengths were in good agreement with cleavage fracture strengths calculated by Petch model rather than by modified Griffith model in micro-structures with fine carbides, the size of which were small below a few hundred nanometer.

공구강에 형성된 복합(B+C+N) 확산층의 특성 연구 (Characterization of the complex(B+C+N) Diffusion Layers Formed on Tool Steels)

  • 이종훈;유위도;임영목;권기현
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.175-182
    • /
    • 2003
  • In this study, the wear resistance of the complex powder diffusion treated KS STD 61 has been investigatived. KS STD 61 tool steel was pretreated in quenching and tempering processes to obtain the tempered martensitic microstructure. The samples were packed with complex powder in steel pot($\Phi$90x60mm) and heated in a box furnace. the complex powder diffusion treatment are carried out at $540^{\circ}C$, $520^{\circ}C$, $500^{\circ}C$ for 40min, 1.5hr and 2.5hr. The microstructure, microhardness, wear resistance, and coating layer thickness of the complex powder diffusion treated samples were investigation. The weight loss of as heat treated sample was 0.4mg and that of the complex powder treated at $540^{\circ}C$ for 2.5hr was 0.17mg. These result means that the wear resistance of tool steels can be easily improved by the powder diffusion process at conventional tempering treatment temperature.

  • PDF