Browse > Article
http://dx.doi.org/10.1016/j.net.2019.03.001

Effects of Y and Ti addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel  

Qiu, Guoxing (State Key Laboratory of Rolling and Automation, Northeastern University)
Zhan, Dongping (School of Metallurgy, Northeastern University)
Li, Changsheng (State Key Laboratory of Rolling and Automation, Northeastern University)
Qi, Min (State Key Laboratory of Rolling and Automation, Northeastern University)
Jiang, Zhouhua (School of Metallurgy, Northeastern University)
Zhang, Huishu (School of Metallurgy Engineering, Liaoning Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.51, no.5, 2019 , pp. 1365-1372 More about this Journal
Abstract
The effects of Y and Ti on the microstructure stability and tensile properties of the reduced activation ferritic/martensitic steel have been investigated. The addition of Y and Ti affected the prior austenite grain size due to the pinning of the inclusions. Ti addition of 0.008 wt% to the steel was intended to promote the precipitation of nano-sized carbides with a high resistance to coarsening. 8Ti14Y exhibited a higher yield strength and a lower DBTT than the other alloys due to the fine grain size and additional precipitation hardening by (Ti, Ta)-rich MX. After thermal exposure at $550^{\circ}C$ for 1500 h, yield strength was dropped significantly in exposed 0Ti13Y. On the contrary, a lower reduction of YS was observed in 8Ti14Y. The $M_{23}C_6$ in 0Ti13Y and 8Ti14Y and MX in 25Ti14Y and 39Ti15Y coarsened seriously during ageing, which could be responsible for the reduction of the tensile properties of alloys.
Keywords
Reduced activation ferritic/martensitic steels; Yttrium; Titanium; Thermal aging; Precipitation; Tensile properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Tanigawa, K. Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater. 417 (1-3) (2011) 9-15.   DOI
2 S.M. Dong, Y. Katoh, A. Kohyama, S.T. Schwab, L.L. Snead, Microstructural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process, Ceram. Int. 28 (8) (2002) 899-905.   DOI
3 M.G. Park, Ch H. Lee, J. Moon, J.Y. Park, T.H. Lee, N. Kang, H. Ch Kim, Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels, J. Nucl. Mater. 485 (2017) 15-22.   DOI
4 Z. Adabavazeh, W.S. Hwang, A.R.A. Dezfoli, Pinning effect of cerium inclusions during austenite grains growth in SS400 steel at $1300^{\circ}C$: a combined phase field and experimental study, Crystals 7 (10) (2017) 308.   DOI
5 V. Thomas Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability of modified 9Cre1Mo steel during long term exposures at elevated temperatures, J. Nucl. Mater. 378 (2008) 273-281.   DOI
6 M.X. Guo, H. Suito, Pinning of austenite grain boundary of Fe-0.09 to 0.53 mass% C-0.02 mass%P alloys by primary inclusions of $Ce_2O_3$ and CeS, Trans. Iron Steel Inst. Jpn. 39 (12) (2007) 1289-1296.
7 Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, Sh Y. Zhu, Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel, Fusion Eng. Des. 82 (15) (2007) 2683-2688.   DOI
8 Z. Shi, F. Han, The microstructure and mechanical properties of micro-scale $Y_2O_3$ strengthened 9Cr steel fabricated by vacuum casting, Mater. Des. (66) (2015) 304-308.
9 C.H. Lee, J.Y.P. ark, W.K. Seol, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and Charpy impact properties of reduced activation ferritic-martensitic steel with Ti, Fusion Eng. Des. 124 (2017) 953-957.   DOI
10 H.K. Kim, J.W. Lee, J. Moon, Ch H. Lee, H.U. Hong, Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors, J. Nucl. Mater. 500 (2018) 327-336.   DOI
11 O. Anderoglu, T. Sang, B.M. Toloczko, S.A. Maloy, Mechanical performance of ferritic martensitic steels for high Dose;Applications in advanced nuclear reactors, Metall. Mater. Trans. 44 (1) (2013) 70-83.   DOI
12 K. Sakata, H. Suito, Grain-growth-inhibiting effects of primary inclusion particles of $ZrO_2$, and MgO in Fe-10 mass pct Ni alloy, Metall. Mater. Trans. 31 (4) (2000) 1213-1223.   DOI
13 T. Gladman, F.B. Pickring, Grain coarsening of austenite, J Iron Steel Inst 205 (6) (1967) 653-655.
14 J. Zrnik, V. Vrchovinsky, Heat treatment structure modification of wrought nickel-based superalloy and its creep resistance, J. Phys. IV 03 (C7) (1993) 283-288.
15 M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (2017) 61-73.   DOI
16 G. Mazzone, J. Aktaa, C. Bachmann, D. DeMeis, P. Frosi, E. Gaganidze, G. DiGironimo, G. Mariano, D. Marzullo, M.T. Porfiri, M. Rieth, R. Villari, J.H. You, Choice of a low operating temperature for the DEMO EUROFER97 divertor cassette, Fusion Eng. Des. 124 (2017) 655-658.   DOI
17 M.E. Alam, S. Pal, K. Fields, S.A. Maloy, D.T. Hoelzer, G.R. Odette, Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy, Mater. Sci. Eng., A 675 (2016) 437-448.   DOI
18 S. Pal, M.E. Alam, S.A. Maloy, D.T. Hoelzer, G.R. Odette, Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy, Acta Mater. 152 (2018) 338-357.   DOI
19 R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A.A.F. Tavassoli, C. Cayron, A.M. Lancha, P. Fernandez, N. Baluc, R. SchV aublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf, E. Lucon, W. Dietz, Present development status of EUROFER and ODS-EUROFER for application in blanket concepts, Fusion Eng. Des. 75-79 (2005) 989-996.   DOI
20 H. Sakasegawa, H. Tanigawa, Mechanical properties of F82H plates with different thicknesses, Fusion Eng. Des. 109-111 (2016) 1724-1727.   DOI
21 R.L. Klueh, M.A. Sokolov, Mechanical properties of irradiated 9Cr-2WVTa steel with and without nickel, J. Nucl. Mater. 367 (6) (2007) 102-106.
22 Sh J. Liu, Q.Y. Huang Q, Ch J. Li, B. Huang, Influence of non-metal inclusions on mechanical properties of CLAM steel, Fusion Eng. Des. 84 (7) (2009) 1214-1218.   DOI
23 H.M. Jing, X.Q. Wu, Y.Q. Liu, M.Q. Lu, K. Yang, Zh M. Yao, W. Ke, Antibacterial property of Ce-bearing stainless steels, J. Mater. Sci. ,42 (13) (2007) 5118-5122.   DOI
24 F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Effects of rare earth metals on steel microstructures, Materials 9 (6) (2017) 1-19.
25 Y.C. Lei, X.K. Guo, H.X. Chang, T.Q. Li, Q. Zhu, G. Chen, L.R. Xiao, Cavitation erosion behavior of CLAM steel weld joint in liquid lead-bismuth eutectic alloy, J. Iron Steel Res. Int. 24 (9) (2017) 935-942.   DOI
26 Q. Lin, B.W. Chen, L. Tang, L. Sh Li, X.Y. Zhu, H.B. Wang, Effects of rare earth on behavior of precipitation and properties in microalloyed steels, J. Rare Earths 21 (2) (2003) 167-171.
27 G.M. Zhang, Zh J. Zhou, M. Wang, Sh F. Li, L. Zou, L.W. Zhang, Tensile and Charpy impact properties of an ODS ferritic/martensitic steel 9Cr-1.8W-0.5Ti-0.35$Y_2O_3$, Fusion Eng. Des. 89 (4) (2014) 280-283.   DOI
28 A. Karasev, H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni- M, (M = Si, Ti, Al, Zr, and Ce) alloy, Metall. Mater. Trans. B 30 (2) (1999) 259-270.   DOI
29 H. T, X. Xi, P.,H. Chen, LI, X. Z, B. Yuan, F. Xu, J. Liu, Effects of inclusions in Zr-doped steels on low temperature toughness, Iron Steel 39 (12) (2004) 60-63.   DOI
30 S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater. 204 (6) (1993) 1843-1849.
31 W. Wang, Sh J. Liu, G. Xu, B.R. Zhang, Q.Y. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at $550^{\circ}C$, Nucl. Eng. Technol. 48 (2) (2016) 518-524.   DOI
32 N. Ch Wang, F. Jiang, X.P. Xu, X. Zh Lu, Effects of crystal orientation on the crack propagation of sapphire by sequential indentation testing, Crystals 8 (1) (2017) 3-16.   DOI
33 A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel, Mater. Char. 59 (2) (2008) 134-139.   DOI
34 K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces, Wear 254 (3) (2003) 278-291.   DOI