• Title/Summary/Keyword: martensite

Search Result 642, Processing Time 0.031 seconds

Correlationship between Tensile Properties and Damping Capacity of 316 L Stainless Steel (316 L 스테인리스강의 인장성질과 감쇠능의 관계)

  • Kwoon, Min-Gi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study is experimentally investigated whether or not a relationship exists between the mechanical properties and damping capacity of cold-rolled 316 L stainless steel. Deformation-induced martensite was formed with surface relief and directionality. With the increasing degree of deformation, the volume fraction of ${\varepsilon}$-martensite increased, and then decreased, while ${\alpha}^{\prime}$-martensite increased rapidly. With an increasing degree of deformation, tensile strength was increased, and elongation was decreased; however, damping capacity was increased, and then decreased. Tensile strength and elongation were affected in the ${\alpha}^{\prime}$-martensite; hence, damping capacity was influenced greatly by ${\varepsilon}$-martensite. Thus, there was no proportional relationship between strength, elongation, and damping capacity.

Damping Capacities of Nonthermoelastic BCC and HCP Martensites of Fe-Mn Binary System (Fe-Mn 이원계에서 비열탄성형 BCC 마르텐사이트와 HCP 마르텐사이트의 진동감쇠능)

  • Choi, C.S.;Kim, J.D.;Moon, I.G.;Baik, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.15-23
    • /
    • 1991
  • The damping capacities of the nonthermoelastic bcc type lath martensite and of the nonthermoelastic hcp type thin plate martensite in Fe-Mn alloys were studied. Fe-17%Mn alloy showing the hcp type thin plate martensite was superior to Fe-4%Mn alloy having the bcc type lath martensite in damping capacity. The damping capacity of the Fe-17%Mn alloy became greater with increasing the hcp martensite volume fraction. The damping mechanism of the Fe-4%Mn alloy was well explained by the dislocation model. However, the damping mechanism of the Fe-17%Mn alloy was explained on the basis of austenite/martensite interface moving model. The two alloys showed almost same levels of tensile strength. However, the elongation was greater in the Fe-17%Mn alloy than in the Fe-4%Mn alloy, showing lower yield strength in the former than in the latter. This result was considered to be attributed to formation of stress-induced martensite during tension test.

  • PDF

Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel (냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향)

  • Hwang, T.H.;Jung, M.H.;Lee, J.Y.;Lee, H.B.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys (Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향)

  • Son, D.U.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kim, H.C.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

Effect of Grain Size on the Deformation Induced Martensite Transformation and Mechanical Properties in Austenitic Stainless Steel with High Amount of Mn (고 Mn 오스테나이트계 스테인리스강의 가공유기 마르텐사이트 변태 및 기계적성질에 미치는 결정립크기의 영향)

  • Hur, T.Y.;Wang, J.P.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2011
  • The effect of grain size on the deformation induced martensite transformation and mechanical properties in austenitic stainless steel with high amount of Mn was studied. a'-martensite was formed by deformation and deformation induced martensite was formed with surface relief. With increase of grain size, volume fraction of deformation induced martensite was increased. With the increase in degree of cold rolling, hardness, and tensile strength was rapidly increased with linear relationship, while, elongation was decreased rapidly and then decreased slowly. With increase of grain size, hardness and tensile strength was rapidly increased with linear relationship, while elongation was decreased rapidly. The hardness, tensile strengths, and elongation were more strongly influenced by deformation induced martensite than the grain size.

Elastic Wave Characteristics of Austenitic STS202 with Subzero Treatment (서브제로 처리한 오스테나이트계 STS202의 탄성파 특성)

  • Choi, Seong-Won;Choi, Byoung-Chul;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.295-300
    • /
    • 2021
  • This study investigated the dominant frequency of the elastic waves from the tensile test. The specimen was rolled with five different rolling degrees (10, 22, 33, 42 and 50%), which was treated subzero. The specimen was rolled at room temperature, which was transformed from austenite to martensite (only α'-martensite). The dominant frequency increased with an increase in the rolling degree regardless of the subzero temperature, and decreased after 33% of the rolling degree. On the other hand, higher frequency band was obtained at lower temperature and long time. The dominant frequency increased when the amount of α'-martensite increased and decreased with the α'-martensite amount between 50-65%. The lower subzero treatment temperature increased the amount of α'-martensite, which resulted in the higher dominant frequency. The longer treatment time at the same subzero temperature led to an increase in the amount of α'-martensite, leading to high dominant frequency.

Strengthening mechanisms of 304 stainless steel during strain aging (304 스테인리스강 시효처리 시 강화기구 고찰)

  • Lee, S.H.;Choi, C.Y.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.382-384
    • /
    • 2009
  • Strengthening mechanisms of metastable austenitic stainless steel, containing $\alpha'$-martensite phase, during strain aging was investigated. The variations of volume fraction of $\alpha'$-martensite phase, hardness of $\alpha'$-martensite phase, hardness of austenite were examined.

  • PDF

Effect of Stress on the Damping Capacity of Damaged Damping Alloy under Fatigue Stress (피로손상된 제진합금의 감쇠능에 미치는 피로 응력의 영향)

  • Lee, Myeong-Soo;Lee, Ye-Na;Nam, Ki-Woo;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.583-589
    • /
    • 2018
  • This study investigates the effect of fatigue stress on the damping capacity in a damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress. ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms by fatigue stress in the damaged Fe-22Mn-12Cr-3Ni-2Si4-Co damping alloy under fatigue stress. The ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ forms with the specific direction and surface relief, or they cross each other. With an increasing fatigue stress, the volume fraction of ${\alpha}^{\prime}-martensite$ and ${\varepsilon}-martensite$ increases. With an increasing fatigue stress, the damping capacity increases with an increase in the volume fraction of ${\varepsilon}-martensite$. The increase in the damping capacity in the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co alloy under fatigue stress strongly affects the increase of ${\varepsilon}-martensite$ formed by fatigue stress, but the damping capacity of the damaged Fe-22Mn-12Cr-3Ni-2Si-4Co damping alloy under fatigue stress is strongly controlled by a large amount of ${\alpha}^{\prime}-martensite$.

The Effect of the Multi-phase (ferrite-bainite-martensite) on the Strengthening and Toughening in the Ductile Cast Iron (구상흑연주철의 강인화에 미치는 3상 혼합조직의 영향)

  • Kim, Sug-Won;Lee, Bang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.8 no.3
    • /
    • pp.310-321
    • /
    • 1988
  • This study is aimed to investigate the effects of the multi-phase(ferrite-bainite-martensite) on the strengthening and toughening in ductile cast iron. All the specimen were austenitized at eutectoid transformation temperature range(${\alpha}+{\gamma}$) for 1hr and austempered at $300^{\circ}C$ and $400^{\circ}C$ for various holding time, and then quenched in iced water for multi - phase (${\alpha}-B-M$). When the volume fraction of martensite is below 15%, excellent maximum fracture load can be obtained due to strengthening by the fine martensite, but, with increasing of volume fraction over 15%, it was decreased drastically. The martensite size became finer and the shape of it changed from bar to spherical type with increasing of austempering holding time. The higher the austenitizing temperature is, the more preferential is the formation of austenite phase around the graphite nodules improving strength and toughness of austempered ductile cast iron.

  • PDF

The Notch Effects on the Fatigue fracture Behaviour of Ferrite-Martensite Dual Phase Steel (페라이트-마르텐사이트 이상조직강의 피로파괴거동에 미치는 노치효과)

  • 도영민
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.46-53
    • /
    • 2003
  • For the tensile tests of the F.E.M., microvoids are created by the boundary separation process at the martensite boundary or neighborhood and at inclusions within the fracture. to grow to the ductile dimple fracture. For the case of the M.E.F., microvoids created at the discontinuities of the martensite phase which exists at the grain boundary of the primary ferrite are grown to coalescence with the cleavage cracks induced at the interior of the ferrite, which as a result show the discontinuous brittle fracture behavior. In spite of their similar tensile strengths, the fatigue limit and the notch sensitivity of the M. E.F. is superior to those of the F.E.M., The M.E.F. is much more insensitive to notch than F.E.M. from the stress concentration factor($\alpha$).