• Title/Summary/Keyword: markov model

Search Result 1,632, Processing Time 0.031 seconds

Study on the Sequential Generation of Monthly Rainfall Amounts (월강우량의 모의발생에 관한 연구)

  • 이근후;류한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4232-4241
    • /
    • 1976
  • This study was carried out to clarify the stochastic characteristics of monthly rainfalls and to select a proper model for generating the sequential monthly rainfall amounts. The results abtained are as follows: 1. Log-Normal distribution function is the best fit theoretical distribution function to the empirical distribution of monthly rainfall amounts. 2. Seasonal and random components are found to exist in the time series of monthly rainfall amounts and non-stationarity is shown from the correlograms. 3. The Monte Carlo model shows a tendency to underestimate the mean values and standard deviations of monthly rainfall amounts. 4. The 1st order Markov model reproduces means, standard deviations, and coefficient of skewness with an error of ten percent or less. 5. A correlogram derived from the data generated by 1st order Markov model shows the charaterstics of historical data exactly. 6. It is concluded that the 1st order Markov model is superior to the Monte Carlo model in their reproducing ability of stochastic properties of monthly rainfall amounts.

  • PDF

Gaussian Approximation of Stochastic Lanchester Model for Heterogeneous Forces (혼합 군에 대한 확률적 란체스터 모형의 정규근사)

  • Park, Donghyun;Kim, Donghyun;Moon, Hyungil;Shin, Hayong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-95
    • /
    • 2016
  • We propose a new approach to the stochastic version of Lanchester model. Commonly used approach to stochastic Lanchester model is through the Markov-chain method. The Markov-chain approach, however, is not appropriate to high dimensional heterogeneous force case because of large computational cost. In this paper, we propose an approximation method of stochastic Lanchester model. By matching the first and the second moments, the distribution of each unit strength can be approximated with multivariate normal distribution. We evaluate an approximation of discrete Markov-chain model by measuring Kullback-Leibler divergence. We confirmed high accuracy of approximation method, and also the accuracy and low computational cost are maintained under high dimensional heterogeneous force case.

Markov Chain Approach to Forecast in the Binomial Autoregressive Models

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.441-450
    • /
    • 2010
  • In this paper we consider the problem of forecasting binomial time series, modelled by the binomial autoregressive model. This paper considers proposed by McKenzie (1985) and is extended to a higher order by $Wei{\ss}$(2009). Since the binomial autoregressive model is a Markov chain, we can apply the earlier work of Bu and McCabe (2008) for integer valued autoregressive(INAR) model to the binomial autoregressive model. We will discuss how to compute the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$ when T periods are used in fitting. Then we obtain the maximum likelihood estimator of binomial autoregressive model and use it to derive the maximum likelihood estimator of the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$. The methodology is illustrated by applying it to a data set previously analyzed by $Wei{\ss}$(2009).

Text Steganography Based on Ci-poetry Generation Using Markov Chain Model

  • Luo, Yubo;Huang, Yongfeng;Li, Fufang;Chang, Chinchen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4568-4584
    • /
    • 2016
  • Steganography based on text generation has become a hot research topic in recent years. However, current text-generation methods which generate texts of normal style have either semantic or syntactic flaws. Note that texts of special genre, such as poem, have much simpler language model, less grammar rules, and lower demand for naturalness. Motivated by this observation, in this paper, we propose a text steganography that utilizes Markov chain model to generate Ci-poetry, a classic Chinese poem style. Since all Ci poems have fixed tone patterns, the generation process is to select proper words based on a chosen tone pattern. Markov chain model can obtain a state transfer matrix which simulates the language model of Ci-poetry by learning from a given corpus. To begin with an initial word, we can hide secret message when we use the state transfer matrix to choose a next word, and iterating until the end of the whole Ci poem. Extensive experiments are conducted and both machine and human evaluation results show that our method can generate Ci-poetry with higher naturalness than former researches and achieve competitive embedding rate.

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

A Dynamic Rain Attenuation Model for Adaptive Satellite Communication Systems (적응형 위성통신 시스템 설계를 위한 동적 강우 감쇠 모델)

  • Zhang, Meixiang;Kim, Soo-Young;Pack, Jeong-Ki
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • Signal fading due to rain is one of the most significant factors degrading link quality in satellite communication systems. Adaptive transmission is considered to be the most efficient means to countermeasure the rain attenuation. In order to develop and design a good adaptive transmission system, we need a dynamic rain attenuation model which can synthesize time series of rain attenuation. In this paper, we present a modeling technique for dynamic rain attenuation using a Markov process. We derive statistical fading properties of the rain attenuation data measured in second time interval and define four states in the Markov process. We synthesize the rain attenuation data using the 4-state Markov process, and compare statistical properties of the simulated data to those of the measured data.

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

Incremental-runlength distribution for Markov graphic data source (Markov 그라픽 데이타에 대한 incremental-runlength의 확률분포)

  • 김재균
    • 전기의세계
    • /
    • v.29 no.6
    • /
    • pp.389-392
    • /
    • 1980
  • For Markov graphic source, it is well known that the conditional runlength coding for the runs of correct prediction is optimum for data compression. However, because of the simplicity in counting and the stronger concentration in distrubution, the incremental run is possibly a better parameter for coding than the run itself for some cases. It is shown that the incremental-runlength is also geometrically distributed as the runlength itself. The distribution is explicitly described with the basic parameters defined for a Markov model.

  • PDF

ANALYZING THE DURATION OF SUCCESS AND FAILURE IN MARKOV-MODULATED BERNOULLI PROCESSES

  • Yoora Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.693-711
    • /
    • 2024
  • A Markov-modulated Bernoulli process is a generalization of a Bernoulli process in which the success probability evolves over time according to a Markov chain. It has been widely applied in various disciplines for modeling and analysis of systems in random environments. This paper focuses on providing analytical characterizations of the Markovmodulated Bernoulli process by introducing key metrics, including success period, failure period, and cycle. We derive expressions for the distributions and the moments of these metrics in terms of the model parameters.

Assessing Markov and Time Homogeneity Assumptions in Multi-state Models: Application in Patients with Gastric Cancer Undergoing Surgery in the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.441-447
    • /
    • 2014
  • Background: Multi-state models are appropriate for cancer studies such as gastrectomy which have high mortality statistics. These models can be used to better describe the natural disease process. But reaching that goal requires making assumptions like Markov and homogeneity with time. The present study aims to investigate these hypotheses. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. To assess Markov assumption and time homogeneity in modeling transition rates among states of multi-state model, Cox-Snell residuals, Akaikie information criteria and Schoenfeld residuals were used, respectively. Results: The assessment of Markov assumption based on Cox-Snell residuals and Akaikie information criterion showed that Markov assumption was not held just for transition rate of relapse (state 1 ${\rightarrow}$ state 2) and for other transition rates - death hazard without relapse (state 1 ${\rightarrow}$ state 3) and death hazard with relapse (state 2 ${\rightarrow}$ state 3) - this assumption could also be made. Moreover, the assessment of time homogeneity assumption based on Schoenfeld residuals revealed that this assumption - regarding the general test and each of the variables in the model- was held just for relapse (state 1 ${\rightarrow}$ state 2) and death hazard with a relapse (state 2 ${\rightarrow}$ state 3). Conclusions: Most researchers take account of assumptions such as Markov and time homogeneity in modeling transition rates. These assumptions can make the multi-state model simpler but if these assumptions are not made, they will lead to incorrect inferences and improper fitting.