• Title/Summary/Keyword: marine sediment

Search Result 1,028, Processing Time 0.027 seconds

Analysis on Optical and Water Quality Measurements for Red Tide Waters (적조 해수의 광학 및 수질변수 관측자료 분석)

  • Koh, Sooyoon;Baek, Seungil;Lim, Taehong;Jeon, Gi-Seong;Jeong, Yujin;Kim, Phillip;Lee, Min-young;Son, Moonho;Kim, Yejin;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1541-1555
    • /
    • 2022
  • Red tide has potential to harm marine ecology and aquaculture. Research on detecting red tide using various optical remote sensors has been conducted, but most of existing algorithms for detecting red tide has limitations, especially in shallow coastal waters with high levels of suspended sediment. For enhanced understanding of the optical behavior of red tide waters, analysis on remote sensing reflectance and water constituent is becoming increasingly important. This study analyzed the optical remote sensing data and water quality variables(Chl-a(Spec), SPM, aph, ad, Turbidity, Chl-a(HPLC), Dominant species) of red tide waters. The data were collected from ship-based campaigns. In addition to the research on detecting red tide, the remote sensing reflectance and extinction coefficients for mesodinium and cochlodinium species were also analyzed. Through the analysis, it was possible to estimate the red tide chlorophyll concentration based on a specific wavelength of the remote sensing reflectance. The study found that chlorophyll concentration and phytoplankton absorption coefficient were highly correlated(R2=0.9), and that the REdiff formula provided a more accurate estimate of red tide concentration than the B-G ratio.

Measurement of heavy metals in antarctic soil at the king sejong station: application of isotope dilution inductively coupled plasma mass spectrometry (동위원소희석 ICP-MS분석법에 의한 남극 세종기지 주변 토양의 중금속 측정)

  • Suh, Jung-Ki;Hwang, Euijin;Min, Hyung Sik
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.364-374
    • /
    • 2008
  • Antarctic Environmental Monitoring Handbook' was published by COMNAP/SCAR in 2000. The standardized method described in this handbook is recommended for monitoring of antarctic environment. High pressure bomb technique in this guide was used to decompose soil samples. In compliance with this guide book, high pressure bomb technique was applied to decompose the antarctic soil sampled at the King Sejong Station. An Isotope Dilution-Inductively Coupled Plasma-Mass Spectrometry (ID-ICP-MS) was applied to determine mass concentrations of Pb, Cu and Zn in the soil. The accuracy in this method was verified by the analysis of certified reference materials (CRM) of NIST 2702 (marine sediment). The analytical results agreed with certified value within the range from 99.5~100.8%. Matrix separation was necessitated for the determination of Cu and Zn by Chelex 100 ion exchange resin. As a result, the average mass concentrations of Pb, Cu and Zn which are suspected to be caused by anthropogenic pollution were 332.9 mg/kg, 95.6 mg/kg and 115.3 mg/kg, respectively. Those for the metals sampled in the soils of the remote regions from the station were 28.1 mg/kg, 101.8 mg/kg and 115.6 mg/kg, respectively.

Changes in Macrobenthic Community Depending on the Anthropogenic Impact and Biological Factors of Boryeong Tidal Flat, Korea (보령 갯벌의 인위적 영향 및 생물학적 요인에 따른 대형저서동물 군집 변화)

  • SEUNG RYUL JEON;GIHO ONG;JIHO LEE;YUNA JEONG;JUN-HO KOO;KWANG-SEOK O;JONG-WOO PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.143-157
    • /
    • 2023
  • This study confirmed the characteristics of macrobenthic community due to anthropogenic environmental changes in the Boryeong Jugyo tidal flat, where the habitat of manila clam (Ruditapes philippinarum) and mud shrimp (Upogebia major) is separated. The total number of occurring species was 55 during the study period with an average habitat density of 338 ind./m2 and a biomass of 212.2 gWWt/m2. The number of occuring species increased from 27 species at the upper flat to 37 species at the lower flat, and the dominant species differed by tide levels (Upper: Leonnates persica, Middle: Heteromastus filiformis, Lower: R. philippinarum). The macro-benthic community sturctures of the top 10 species using cluster analysis and nMDS were divided into two groups, focusing on Manila clam culture farm of lower flats and middle flats with high habitat density, reflecting the influence of specific species. The sediment composition of the U. major habitat space fluctuated highly, but it was maintained annually, and the sorting coefficient was 2.1 𝜑, and the proportion of the same particle size was increased. In particular, because the middle flat has a dense anthropogenic impact, a dominant species, H. filiformis dominated and revealed a relationship with the density of burrow holes of U. major, which is considered to be a biological interaction between these two macrofauna in this tidal flat.

Assessment of the toxic effects of dichlofluanid using survival and relative growth rate on brown alga Undaria pinnatifida (미역(Undaria pinnatifida) 배우체의 생존 및 상대성장률을 이용한 dichlofluanid의 독성영향 평가)

  • Un-Ki Hwang;Yun-Ho Park;Bo-Ram Sim;Ju-Wook Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Biocide dichlofluanid breaks down quickly and accumulates easily in sediment, potentially causing a persistent impact on various marine organisms. We analyzed the potential toxicity of dichlofluanid on major aquaculture species in Korea, Undaria pinnatifida. Female gametophytes of U. pinnatifida were exposed to dichlofluanid at concentrations of 0, 1, 2, 4, 8, 16, and 32 mg L-1, and their survival and relative growth rate were analyzed. The no observed effect concentration(NOEC), lowest observed effect concentration (LOEC), and median lethal concentration (LC50) for female gametophyte survival were determined as 1, 2, and 10.82 (95% CI: 8.87-13.23) mg L-1, respectively. The NOEC, LOEC, and median effective concentration (EC50) for relative growth rate were 1, 2, and 6.58 (95% CI: 6.03-7.17) mg L-1, respectively. Female gametophytes of U. pinnatifida were expected to experience toxic effects at concentrations above 2 mg L-1 of dichlofluanid. These research findings are expected to serve as important reference data for evaluating the toxicity effects of U. pinnatifida in its early life stages when exposed to dichlofluanid.

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

Estimation of Addition and Removal Processes of Nutrients from Bottom Water in the Saemangeum Salt-Water Lake by Using Mixing Model (혼합모델을 이용한 새만금호 저층수 내 영양염의 공급과 제거에 관한 연구)

  • Jeong, Yong Hoon;Kim, Chang Shik;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.306-317
    • /
    • 2014
  • This study has been executed to understand the additional and removal processes of nutrients in the Saemangeum Salt-water Lake, and discussed with other monthly-collected environmental parameters such as water temperature, salinity, dissolved oxygen, suspended solids, and Chl-a from 2008 to 2010. $NO_3$-N, TP, $PO_4$-P, and DISi showed the removal processes along with the salinity gradients at the surface water of the lake, whereas $NO_2$-N, $NH_4$-N, and Chl-a showed addition trend. In the bottom water all water quality parameters except $NO_3$-N appeared addition processes indicating evidence of continuous nutrients suppliance into the bottom layer. The mixing modelling approach revealed that the biogeochemical processes in the lake consume $NO_3$-N and consequently added $NH_4$-N and $PO_4$-P to the bottom water during the summer seasons. The $NH_4$-N and $PO_4$-P appeared strong increase at the bottom water of the river-side of the lake and strong concentration gradient difference of dissolved oxygen also appeared in the same time. DISi exhibited continuous seasonal supply from spring to summer. Internal addition of $NH_4$-N and $PO_4$-P in the river-side of the lake were much higher than the dike-side, while the increase of DISi showed similar level both the dike and river sides. The temporal distribution of benthic flux for DISi indicates that addition of nutrients in the bottom water was strongly affected by other sources, for example, submarine ground-water discharge (SGD) through bottom sediment.

Community Structure of Macrobenthic Assemblages around Gijang Province, East Sea of Korea (동해 기장군 주변해역에 서식하는 대형저서동물의 군집구조)

  • Kim, Dae-Ik;Seo, In-Soo;Moon, Chang-Ho;Choi, Byoung-Mi;Jung, Rae-Hong;Son, Min-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2011
  • This study investigated the community structure and spatio-temporal variation of macrobenthic assemblages around Gijang Province, East Sea of Korea. Macrobenthos collected seasonally using a modified van Veen grab sampler from March to November 2006. A total of 157 macrobenthic fauna were collected. The overall average macrobenthos density were $552 \;ind/m^2$. The species number of macrobenthos was in the range from 62 in winter and spring to 122 in autumn. On the other hand, abundance fluctuated between 6,540 (in spring) and 17,920 (in autumn) inds./$18m^2$. Cluster analysis and non-metric multi-dimensional scaling (nMDS) were applied to assess the spatio-temporal fluctuation in the macrobenthic assemblages. Cluster analysis and nMDS ordination analysis based on the Bray-Curtis similarity identified 3 station groups. The group 1 (station 8~10, 12, 13, 17 and 18) was characterized by high abundance of the polychaete Lumbrineris longifolia, the bivalve Ennucula tenuis and the Amphipoda spp., with mean phi range from $6.2{\Phi}$ to $7.1{\Phi}$ (above 50m water depth). The group 2 (station 5~7, 11, 14~16) was numerically dominated by the po1ychaete Ampharete arctica and the bivalve Theorafragilis (mean phi: $6.0{\sim}7.0{\Phi}$; within 40 m water depth). Finally group 3 (station 1~4) was characterized by high density of the polychaetes Magelona japonica and Sternaspis scutata, with mean phi range from $3.5{\Phi}$ to $6.9{\Phi}$ (below 30 m water depth). In conclusion, the Macrobenthic community structure showed a distinct spatial and temporal trend, which seemed to be related to the water depth and sediment composition.

백악기 미국 걸프만 퇴적층의 지구조적, 퇴적학적, 석유지질학적 고찰 (A Review of Tectonic, Sedinlentologic Framework and Petroleum Geology of the Cretaceous U. S. enlf Coast Sedimentary Sequence)

  • Cheong Dae-Kyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.27-39
    • /
    • 1996
  • In the Cretaceous, the Gulf Coast Basin evolved as a marginal sag basin. Thick clastic and carbonate sequences cover the disturbed and diapirically deformed salt layer. In the Cretaceous the salinities of the Gulf Coast Basin probably matched the Holocene Persian Gulf, as is evidenced by the widespread development of supratidal anhydrite. The major Lower Cretaceous reservoir formations are the Cotton Valley, Hosston, Travis Peak siliciclastics, and Sligo, Trinity (Pine Island, Pearsall, Glen Rose), Edwards, Georgetown/Buda carbonates. Source rocks are down-dip offshore marine shales and marls, and seals are either up-dip shales, dense limestones, or evaporites. During this period, the entire Gulf Basin was a shallow sea which to the end of Cretaceous had been rimmed to the southwest by shallow marine carbonates while fine-grained terrigengus clastics were deposited on the northern and western margins of the basin. The main Upper Cretaceous reservoir groups of the Gulf Coast, which were deposited in the period of a major sea level .rise with the resulting deep water conditions, are Woodbinefruscaloosa sands, Austin chalk and carbonates, Taylor and Navarro sandstones. Source rocks are down-dip offshore shales and seals are up-dip shales. Major trap types of the Lower and Upper Cretaceous include salt-related anticlines from low relief pillows to complex salt diapirs. Growth fault structures with rollover anticlines on downthrown fault blocks are significant Gulf Coast traps. Permeability barriers, up-dip pinch-out sand bodies, and unconformity truncations also play a key role in oil exploration from the Cretaceous Gulf Coast reservoirs. The sedimentary sequences of the major Cretaceous reseuoir rocks are a good match to the regressional phases on the global sea level cuwe, suggesting that the Cretaceous Gulf Coast sedimentary stratigraphy relatively well reflects a response to eustatic sea level change throughout its history. Thus, of the three main factors controlling sedimentation (tectonic subsidence, sediment input, and eustatic sea level change) in the Gulf Coast Basin, sea-level ranks first in the period.

  • PDF

The Early-Stage Changes of Water Qualities after the Saemangeum Sea-dike Construction (새만금 방조제 체절 이후 초기의 수질변화에 관한 연구)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee;Kim, Hyun-Soo;Choi, Joeng-Hoon;Kim, Won-Jang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.199-213
    • /
    • 2008
  • Saemangeum salt-water Lake has been created by the completion of the sea-dike in April 2006. To monitor the water qualities of the lake during the sea-dike construction, salinity, SS, nutrients(DIN, DIP, DISi), and chlorophyll-$\alpha$ was analyzed for the surface water from 1999 to 2007. Due to the dike construction, weaker tidal current and lesser resuspension of bottom sediment resulted in the marked decrease of the concentrations of SS in the lake water. Consequently the clearer lake water has provided better condition for primary production with deeper penetration of sunlight into the water column and sufficient nutrient content in the water. Finally the chlorophyll-$\alpha$ content became approximately double in the concentration after the dike construction. Highly stimulated algal production with the marked decrease of the concentrations of SS was decreased the concentration of DIP in the surface water. On the other hand the concentration of DIN and DISi in surface water was increased after dike construction due to the expansion of the freshwater and the supply from bottom layer. As a result, the lake revealed an extremely high NIP ratio and a DIP-limited ecosystem. The lake has been transformed from a typical coastal ecosystem to a brackish one. Since the dike completion, the lake has shown a similar change pattern to the Geum River estuary. Due to the salt-wedge intrusion of seawater, it is highly probable to expect the formation of low-oxygen zone at the bottom layer near the river-mouth area of the lake during the summer. Therefore we need a continuous sentinel monitoring of bottom water qualities in the near future.

  • PDF

Denitrification and COD, TN and SS fluxes in Komso Bay, Korea (곰소만에서의 오염물질 플럭스 및 탈질산화)

  • Kim Do-Hee;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.32-41
    • /
    • 2001
  • We measured the fluxes of COD, TN and 55 in addition to composition and quality of sediment in Komso Bay, West Coast of Korea. The fluxes of TN, SS and COD were measured during flood tide and ebb tide in April and August, 2000. Denitrification rates in the sediments was also measured by direct produced $N_2$ gas technique on April and August from 1999 to 2000 in the same sea area. The composition of the sediments were 0.33~5.67 % of sand, 20.2~25.6 of gravel and 68.7~77.0 % of silt. Ignition loss of the sediments were 6.58~7.50 %. The concentration of hydrogen sulfide in the sediments were 0.028~0.326 mg/gㆍdry and oxidation reduction potential of the sediments were -28~-15 mV Diurnal fluxes of COD, total nitrogen, and suspended solids with tidal current and denitrification rate in the tidal flat have been determined in Komso Bay The diurnal net flux of COD was same in April. While 14.4 ton COD/hr of net influx into the tidal flat was recorded in August. The diurnal net influx of total nitrogen was 0.16 ton N/hr in April and 1.13 ton N/hr in August. The diurnal net influx of suspended solids was 0.05 ton SS/hr in April, and also net influx of suspended solids was 0.29 ton SS/hr in August. The overall purification ability of the tidal flat were estimated 0.00~5.69 g COD/$m^2/day$, 0.06~0.45 g N/m²/day and 0.02~0.12 g SS/$m^2/day$ for COD, TN and SS, respectively. Denitrification rate was 0.009~1.720 m mole ${N_2}/m^2/day$ (average 0.702 m mole ${N_2}/m^2/day$) in April and 0.033~0.133 m mole ${N_2}/m^2/day$ (average 0.077 m mole ${N_2}/m^2/day$) in August, 1999. 0.000~l.909 m mole ${N_2}/m^2/day$ (average 0.756 m mole ${N_2}/m^2/day$) in April, 0.000~1.691 m mole ${N_2}/m^2/day$ (average 0.392 m mole ${N_2}/m^2/day$) in August, 2000. Even with a wide range of denitrification rate depending on the sampling location and studied periods, the average denitrification rate was estimated 0.482 m mole ${N_2}/m^2/day$ in the tidal flat of Komso Bay.

  • PDF