• 제목/요약/키워드: marine dinoflagellate

검색결과 163건 처리시간 0.021초

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists

  • Lee, Moo Joon;Jeong, Hae Jin;Kim, Jae Seong;Jang, Keon Kang;Kang, Nam Seon;Jang, Se Hyeon;Lee, Hak Bin;Lee, Sang Beom;Kim, Hyung Seop;Choi, Choong Hyeon
    • ALGAE
    • /
    • 제32권4호
    • /
    • pp.285-308
    • /
    • 2017
  • Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in many countries. To investigate the roles of metazooplankton in red tide dynamics of C. polykrikoides in the South Sea of Korea, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals from May to November 2014. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The mean abundance of total metazooplankton at each sampling time during the study was 297-1,119 individuals $m^{-3}$. The abundance of total metazooplankton was significantly positively correlated with that of phototrophic dinoflagellates (p < 0.01), but it was not significantly correlated with water temperature, salinity, and the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates (p > 0.1). Thus, dinoflagellate red tides may support high abundance of total metazooplankton. Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated. The calculated maximum grazing coefficients attributable to calanoid copepods on C. polykrikoides and Prorocentrum spp. were 0.018 and $0.029d^{-1}$, respectively. Therefore, calanoid copepods may not control populations of C. polykrikoides or Prorocentrum spp. Furthermore, the maximum grazing coefficients attributable to calanoid copepods on the heterotrophic dinoflagellates Polykrikos spp. and Gyrodinium spp., which were grazers on C. polykrikoides and Prorocentrum spp., respectively, were 0.008 and $0.047d^{-1}$, respectively. Therefore, calanoid copepods may not reduce grazing impact by these heterotrophic dinoflagellate grazers on populations of the red tide dinoflagellates.

Bioactive Natural Products from Chinese Tropical Marine Plants and Invertebrates

  • Guo, Y.W.;Huang, X.C.;Zhang, W.;Sun, Y.Q.
    • 한국해양바이오학회지
    • /
    • 제1권1호
    • /
    • pp.22-33
    • /
    • 2006
  • This paper deals mainly with chemical and biological investigations, recently effected in the authors' laboratory, of Chinese tropical marine plants and invertebrates on three topics: 1) an unusual macrocyclic polydisulfide from the Chinese mangrove Bruguiera gymnorrhiza; 2) polyhydroxylpolyene compounds from marine dinoflagellate Amphidinium sp.; 3) two new series of uncommon steroids from marine in vertebrates.

  • PDF

유해성 적조생물, Cochlodinium polykrikoides Margalef (Dinophyceae) 성장에 영향을 미치는 광량과 파장 (Effects of Light Quantity and Quality on the Growth of the HarmfulDinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae))

  • 오석진;윤양호;김대일
    • ALGAE
    • /
    • 제21권3호
    • /
    • pp.311-316
    • /
    • 2006
  • The effects of light quality and irradiance on the growth of Cochlodinium polykrikoides were investigated in the laboratory. At 25°C and 30 psu the irradiance-growth curve was described as μ = 0.34 (I-9.76)/(I+12.5), (r=0.98). This suggests half-saturation photon flux density (PFD) (Ks) of 32.0 μmol photons m–2 s–1, and a compensation PFD (Ic) of 9.76 μmol photons m–2 s–1. Because the Ic equates to a depth of ca. 15.4 m, these responses suggest that irradiance at the depth around and below the thermocline in Yeosuhae Bay would provide favorable conditions for C. polykrikoides. Photoinhibition did not occur at 300 μmol photons m–2 s–1, which was the maximum irradiance used in this study. Blue (450 nm), yellow (590 nm) and red (650 nm) light had different effects on the growth of C. polykrikoides: it grew well under blue light, but not under yellow light. This implies that C. polykrikoides is more likely to cause an outbreak of red tide in the open sea where blue-green wavelengths predominate, rather than in enclosed water bodies where suspended particles absorb most of the blue wavelengths, and yellow-orange wavelengths predominate.

선박평형 수 내 유해 와편모조류(Dinophyceae)의 분자생물학적 검출 (Molecular Detection of Harmful Dinoflagellates (Dinophyceae) in Ballast Water)

  • 박태규;김성연
    • 한국해양학회지:바다
    • /
    • 제15권1호
    • /
    • pp.36-40
    • /
    • 2010
  • 선박평형 수는 유독 와편모조류 및 다양한 미세조류의 국제적인 이동경로로 알려져 있다. 본 연구에서는 선박평형 수에 있는 와편모조류의 다양성을 조사하기 위하여 와편모조류 특이적인 PCR primer와 종 특이적인 real-time PCR 유전자 탐침자를 이용하였다. 선박평형 수 시료에 대한 광학현미경 조사에서는 와편모조류가 매우 낮은 농도로 관찰되었지만, SSU rDNA의 cloning 및 염기서열 분석 결과에서는 기생 와편모조류, 초미세플랑크톤, 어패류 폐사 원인종 등 다양한 종류가 확인되었다. 본 연구 결과는 종 톡이적 PCR primer와 같은 분자생물학적 방법이 선박 평형 수에 외래 유입종의 신속 정확한 진단에 유용함을 보여주고 있다.

유독와편모조류 Alexandrium catenella (Group I)의 마비성패독 생산에 미치는 수온과 염분의 영향 (Influence of Water Temperature and Salinity on the Production of Paralytic Shellfish Poisoning by Toxic Dinoflagellate Alexandrium catenella (Group I))

  • 남기택;오석진
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.119-126
    • /
    • 2021
  • 본 연구에서는 실내에서 다양한 수온과 염분 조건에서 유독와편모조류 Alexandrium catenella(Group I)의 생장과 함께 마비성패독의 함량을 조사하였다. A. catenella의 수온과 염분 최적생장은 각각 20~30℃과 20~30 psu였으며, 광온성과 광염성종으로 나타났다. A. catenella는 낮은 수온 구간(10℃와 15℃)에서 독함량과 독성이 높게 나타났으며, 염분에 따라서는 차이가 크지 않았다. 따라서 15℃이하의 수온에서 본 종주와 같은 생리적인 특성을 가진 유독와편모조류가 우점한다면, 이매패류는 빠르게 독화될 가능성이 있다. 향후 A. catenella의 출현에 따른 마비성패독 예찰·예보를 위해 다양한 환경변화에 따른 A. catenella의 다른 종주와 상업적인 이매패류 독화에 대한 연구가 더 필요한 것으로 판단된다.

Effects of aeration and centrifugation conditions on omega-3 fatty acid production by the mixotrophic dinoflagellate Gymnodinium smaydae in a semi-continuous cultivation system on a pilot scale

  • Ji Hyun You;Hae Jin Jeong;Sang Ah Park;Se Hee Eom;Hee Chang Kang;Jin Hee Ok
    • ALGAE
    • /
    • 제39권2호
    • /
    • pp.109-127
    • /
    • 2024
  • High production and efficient harvesting of microalgae containing high omega-3 levels are critical concerns for industrial use. Aeration can elevate production of some microalgae by providing CO2 and O2. However, it may lower the production of others by generating shear stress, causing severe cell damage. The mixotrophic dinoflagellate Gymnodinium smaydae is a new, promising microalga for omega-3 fatty acid production owing to its high docosahexaenoic acid content, and determining optimal conditions and methods for high omega-3 fatty acid production and efficient harvest using G. smaydae is crucial for its commercial utilization. Therefore, to determine whether continuous aeration is required, we measured densities of G. smaydae and the dinoflagellate prey Heterocapsa rotundata in a 100-L semi-continuous cultivation system under no aeration and continuous aeration conditions daily for 9 days. Furthermore, to determine the optimal conditions for harvesting through centrifugation, different rotational speeds of the continuous centrifuge and different flow rates of the pump injecting G. smaydae + H. rotundata cells into the centrifuge were tested. Under continuous aeration, G. smaydae production gradually decreased; however, without aeration, the production remained stable. Harvesting efficiency and the dry weights of omega-3 fatty acids of G. smaydae + H. rotundata cells at a rotational speed of 16,000 rpm were significantly higher than those at 2,000-8,000 rpm. However, these parameters did not significantly differ at injection pump flow rates of 1.0-4.0 L min-1. The results of the present study provide a basis for optimized production and harvest conditions for G. smaydae and other microalgae.

Growth of the Dinoflagellate Alexandrium tamarense Isolated from Jinhae Bay, Korea in Axenic Cultures

  • Lee, Hae-Ok;Ishimaru, Takashi;Toshiya, Katano;Han, Myung-Soo
    • 환경생물
    • /
    • 제24권3호
    • /
    • pp.275-281
    • /
    • 2006
  • We examined effects of water temperature, salinity, irradiance, and different media on the growth of the toxic dinoflagellate Alexandrium tamarense (HYM9704), which was isolated from Jinhae Bay, Korea. The ranges of temperature and salinity in which the strain was able to grow were $10{\sim}20^{\circ}C$ and $20{\sim}34$ psu, respectively. These values were in accordance with those observed in situ. The maximum growth rates of axenic A. tamarense (HYM9704) was $0.25d^{-1}$ at $15^{\circ}C$, 30 psu, and $100{\mu}Em^{-2}s^{-1}$. The temperature affected the growth rates of axenic A. tamarense more significantly than the salinity. The type of culture media did not affect the growth rates of axenic A. tamarense. The strain in N-limited and P-limited media went into the stationary phase faster than that in T1 and T1/2 medium.

Direct Examination of the Dietary Preference of the Copepod Calanus helgolandicus Using the Colorimetric Approach

  • Kang, Hyung-Ku;Poulet, Serge;Ju, Se-Jong
    • Ocean Science Journal
    • /
    • 제42권3호
    • /
    • pp.193-197
    • /
    • 2007
  • The food selectivity of tethered females of the copepod Calanus helgolandicus was examined by using the colorimetric approach. First, feeding behavior of the copepod did not show any differences between the red-color stained with neutral red and non-stained diets using the diatom Coscinodiscus curvatulus. Then, the copepods were fed a mixtures of two diets, the diatom C. curvatulus, stained with neutral red, and the dinoflagellate Gymnodinium sanguineum for $14\sim60$ minutes of feeding duration. The foregut colors of females were examined using a stereo-microscope and a video monitor. The foreguts of animals fed with a high density of diatoms in mixed diets showed a dark red color, whereas those fed with a high density of dinoflagellate in mixed diets were a dark yellow. The results suggest that this species of copepod may not selectively feed either one of the diets used for this study. Their feeding activity may be more likely related to the density of available prey in their environment. Therefore, this quick and easy colorimetric approach could provide very useful information, like the pre-screening procedure before designing and conducting the time-consuming and complex feeding experiments to understand the feeding ecology of copepods.

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J.;Wolny, Jennifer L.;Williams, B. James;Dirks, Michael D.;Brame, Julie A.;Richardson, R. William
    • ALGAE
    • /
    • 제26권2호
    • /
    • pp.181-192
    • /
    • 2011
  • Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.