• Title/Summary/Keyword: marine diesel engine

Search Result 574, Processing Time 0.031 seconds

Rheological behavior study of Marine Lubricating oil on the amount of MGO (Marine Gas Oil) dilution (해상용 경유의 희석량에 따른 선박용 윤활유의 유변학적 거동연구)

  • Song, In Chul;Lee, Young Ho;Yeo, Young Hwa;Ahn, Su Hyun;Kim, Dae il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.240-245
    • /
    • 2016
  • This paper describes the rheological behavior study such as viscosity and change of shear stress regarding marine lubricating oil according to the amount of Marine Gas Oil (MGO) dilution. The viscosity reduction due to fuel dilution is crucially important characteristic to decreasing engine durability because of the abrasion of piston ring or liner. The lubricating oil used in this paper was blended with magnetic stirrer diluted High Sulfur Diesel (HSD, 0.05 wt%) ratio of 3 %, 6 %, 10 %, 15 % and 20 %. The viscosity and shear stress of diluted lubricating oil were measured with the temperature range from $-10^{\circ}C$ to $80^{\circ}C$ using a rotary viscometer (Brookfield Viscometer). As the amount of MGO dilution increasing in lubricating oil, the viscosity and stress of those decreased, because the lubricating oil diluted MGO with low viscosity show the trends to decreased viscosity and shear stress. Especially, the viscosity and shear stress of lubricating oil radically decreased at low temperature ($0{\sim}-10^{\circ}C$) and doesn't effect in MGO dilution at over $40^{\circ}C$. As temperature risen, the reduction of the viscosity and shear stress in lubricating oil shows the Newtonian behavior. The lubricating oil was required to check up periodically to improve engine durability since the viscosity reduction by MGO dilution accelerating the engine abrasion.

Computational Study on The Effect of Injection Nozzle Hole Exit Angle Variation on Injection Characteristics (분사노즐 출구 각도 변화가 분사특성에 미치는 영향에 관한 계산적 고찰)

  • Kim, Ju Youn;Park, Kweon Ha;Lee, Seung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.997-1002
    • /
    • 2012
  • Emission regulations have been strengthened step by step for marine engines. A noble measure is required both inside and outside of the combustion chamber. The combustion characteristics in cylinder have a very close relationship with the exhaust emission characteristics. Injection valve and nozzle hole geometry is an important factor for combustion. The study to improve the spray characteristics has concentrated on nozzle inlet geometry and nozzle hole diameter, but the exit geometry has not considered. In this study the nozzle exit angle variation was tested. The results show that the angle between $30^{\circ}$ and $60^{\circ}$ is more effective than the other cases.

Crevice Corrosion Study of Materials for Propulsion Applications in the Marine Environment

  • Deflorian, F.;Rossi, S.;Fedel, M.;Zanella, C.;Ambrosi, D.;Hlede, E.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.288-295
    • /
    • 2015
  • The present work addresses crevice and galvanic corrosion processes occurring at the cylinder head gasket/cylinder head interface and cylinder head gasket/cylinder liner interface of four-stroke medium-speed diesel engines for marine applications. The contact between these systems and the marine environment can promote formation of demanding corrosion conditions, therefore influencing the lifetime of the engine components. The electrochemical behavior of various metals and alloys used as head gasket materials (both ferrous alloys and copper alloys) was investigated. The efficacy of corrosion inhibitors was determined by comparing electrochemical behavior with and without inhibitors. In particular, crevice corrosion has been investigated by electrochemical tests using an experimental set-up developed starting from the requirements of the ASTM G-192-08, with adaptation of the test to the conditions peculiar to this application. In addition to the crevice corrosion resistance, the possible problems of galvanic coupling, as well as corrosive reactivity, were evaluated using electrochemical tests, such as potentiodynamic measurements. It was possible to quantify, in several cases, the corrosion resistance of the various coupled materials, and in particular the resistance to crevice corrosion, providing a basis for the selection of materials for this specific application.

Effect of static mixer geometry on flow mixing and pressure drop in marine SCR applications

  • Park, Taewha;Sung, Yonmo;Kim, Taekyung;Lee, Inwon;Choi, Gyungmin;Kim, Duckjool
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 2014
  • Flow mixing and pressure drop characteristics for marine selective catalytic reduction applications were investigated numerically to develop an efficient static mixer. Two different mixers, line- and swirl-type, were considered. The effect of vane angles on the relative intensity, uniformity index, and pressure drop was investigated in a swirl-type mixer; these parameters are dramatically affected by the mixer geometry. The presence of a mixer, regardless of the mixer type, led to an improvement of approximately 20% in the mixing performance behind the mixer in comparison to not having a mixer. In particular, there was a tradeoff relationship between the uniformity and the pressure drop. Considering the mixing performance and the pressure drop, the swirl-type mixer was more suitable than the line-type mixer in this study.

A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals (차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구)

  • Sim, Kichan;Lee, Kangsu;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.492-499
    • /
    • 2022
  • This study experimentally investigates the effect of dimensionality reduction of vibration signal on fault diagnosis of a marine engine. By using the principal component analysis, a vibration signal having the dimension of 513 is converted into a low-dimensional signal having the dimension of 1 to 15, and the variation in fault diagnosis accuracy according to the dimensionality change is observed. The vibration signal measured from a full-scale marine generator diesel engine is used, and the contribution of the dimension-reduced signal is quantitatively evaluated using two kinds of variable importance analysis algorithms which are the integrated gradients and the feature permutation methods. As a result of experimental data analysis, the accuracy of the fault diagnosis is shown to improve as the number of dimensions used increases, and when the dimension approaches 10, near-perfect fault classification accuracy is achieved. This shows that the dimension of the vibration signal can be considerably reduced without degrading fault diagnosis accuracy. In the variable importance analysis, the dimension-reduced principal components show higher contribution than the conventional statistical features, which supports the effectiveness of the dimension-reduced signals on fault diagnosis.

Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System (박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구)

  • Jang, Jaehwan;Park, Hyunchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • Among various De-NOx technologies, Urea-based Selective Catalytic Reduction (SCR) systems are known to be the most effective in marine diesel applications. The spraying and mixing behavior of the urea-water solution has a decisive effect on the system's net efficiency. Therefore, in this study, the spray behavior and ammonia uniformity with and without a static mixer were analyzed by CFD in order to optimize the SCR system. The results showed that the static mixer significantly affected the uniformity of velocity and ammonia concentration. Static mixers may be especially suited for marine SCR systems with space constraints.

A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations (선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구)

  • Kim, Kook-Hyun;Kim, Yun-Hwan;Choi, Tae-Muk;Choi, Sung-Won;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.

Some Trends of Marine Engineering and Shipbuilding in Asia (reliability investigation works and their evaluation indices)

  • Hashimoto, Takeshi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.19-28
    • /
    • 1996
  • In Asia countries the productions of ship building and marine engines have been increasing, specially Japanese marine industries have worked hard after 1960s and Korean ones after 1980s. Recently the other countries, as Taiwan and China, have been working so that these hour Asian countries are occuping the high level of shared ratio of productions for gross tonnages and horse powers, which are 74 and 64[%] of the world ones ($8.6\times10$+6[GT], $8.6\times10$+6[PS]) in 1994. Korean industries had the highest shared ratio of production of tanker vessel and 2 stroke diesel engine as 45[%]($2.2\times10$+6[GT]) and 37[%]($1.0\times10$+6[PS]) which were more than those of Japan as 34 and 16[%] in 1989 respectively. Some marine databases and their network links among Asian countries are proposed due to the posibility of collection and analyses with their own specifications by the marine industries and operators as well as Japanese ship reliability investigation works(SRIW) like SRIC in Japan. During 1966 and 1996 16 times of SRIW in Japan have been carried out by ship reliability investigation group(SRIG) in Japan. There have been collected and evaluated a great number of field data of failures and maintenances($700\times10$+3[occ], $1.6\times10$+6[MH}) during running hours($13.4\times10$+6[Hrs]), from which many kinds of evaluation indices could be gotten as the three indices of occurring rate$\lambda$(52.2[occ/1000Hrs]), average man-hour mh(2.29[MH/occ]) and manning index MI(119[MH/1000Hrs]). An estimation example having the three indices$\lambda$, mh and MI were shown by the SRIC 1990 Data Base in Japan for the two kinds of fuel oil suppling subsystems which are dual fuel oil one(DFOS) and mono fuel oil one(MFOS). Three indices MI, and mh for DFOS and MFOS results in 7.16 and 5.20[MH/1000Hrs], 2.63 and 2.06[occ/1000 Hrs]. Therefore the more simple subsystem MFOS can save approximately 30[%] of maintenance load. Finlly an utilization methods are shown for the SRIC in Japan by means of computer system and worlwide internet links.

  • PDF

An Event-Driven Failure Analysis System for Real-Time Prognosis (실시간 고장 예방을 위한 이벤트 기반 결함원인분석 시스템)

  • Lee, Yang Ji;Kim, Duck Young;Hwang, Min Soon;Cheong, Young Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.250-257
    • /
    • 2013
  • This paper introduces a failure analysis procedure that underpins real-time fault prognosis. In the previous study, we developed a systematic eventization procedure which makes it possible to reduce the original data size into a manageable one in the form of event logs and eventually to extract failure patterns efficiently from the reduced data. Failure patterns are then extracted in the form of event sequences by sequence-mining algorithms, (e.g. FP-Tree algorithm). Extracted patterns are stored in a failure pattern library, and eventually, we use the stored failure pattern information to predict potential failures. The two practical case studies (marine diesel engine and SIRIUS-II car engine) provide empirical support for the performance of the proposed failure analysis procedure. This procedure can be easily extended for wide application fields of failure analysis such as vehicle and machine diagnostics. Furthermore, it can be applied to human health monitoring & prognosis, so that human body signals could be efficiently analyzed.