• Title/Summary/Keyword: marine diesel engine

Search Result 574, Processing Time 0.019 seconds

A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure) (디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책))

  • 전효중;이돈출;김의간;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

Analysis on the Technology R&D of the Fuel Cell Systems for Power Generation in Ships (선박 동력발생용 연료전지시스템 기술개발의 전망에 대한 고찰)

  • Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.924-931
    • /
    • 2007
  • Now, there are two big issues threatening global society, which are the depletion of fossil fuels and the environmental disruption. Therefore, marine diesel engine, taking up over 95% share of the marine power market, has met the environmental and economical problems, too. These problems have caused a necessity of new, alternative power systems in ships and fuel cell systems has been playing a central role as one of the alternatives. This paper analyzes the characteristics of marine fuel cell systems, R&D trends of advanced countries, and mapping out R&D strategy of Korea.

Emission factors based estimation of exhaust emissions with biodiesel blended fuel from naval vessel propulsive diesel engine (바이오디젤 혼합연료를 사용하는 함정추진디젤기관의 배출계수를 이용한 배기가스 배출량 예측)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • National investment was performed in the research and development of renewable energy because of climate change by air pollution, exhaustion of energy sources, energy security, and so on. Biodiesel fuel of the renewable energy is highlighted as friendly environment energy, it is possible to operate in regular diesel engines when it is blended with invariable ratios without making any changes. Emission factors have been estimated for commercial ship from various research institutes; however, it is difficult to develop emission factors for military vessels. In this work, biodiesel blended fuel emission factors for sulfur dioxide and carbon dioxide were quantitatively estimated from propulsive diesel engine installed on naval vessel using fuel property analysis. In addition, exhaust emissions were quantitatively calculated on the basis of fuel consumption rate with biodiesel content by percentage.

A Study on the Influences of Recirculated Exhaust Gas upon Wear of Cylinder and Piston in Diesel Engines with EGR System (EGR시스템 디젤기관의 실린더 및 피스톤 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.827-835
    • /
    • 1998
  • The effects of recirculated exhaust gas on the wear of cylinder liner piston and piston rings have been investigated by the experiment with a two-cylinder four cycle indirect injection diesel engine operating at 75% load and 1600 rpm speed For the purpose of comparison between the rates of two cylinders with and without EGR the recirculated exhaust gas is sucked into one of two cylinders after the soot among exhaust emissions is removed by an intntionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diame-ter) while only the fresh air into another cylinder. These experiments are carried out on the fuel injection at a fixed $15.3^{\circ}$ BTDC timing. It is found that firstly the mean wear amount of cylinder liner with EGR is more increased in the measurement positions of the second half than of the first half and the mean wear amount without EGR is almost uniform regardless of measurement posi-tions secondly the wear rates of the first and second piston ring(compression ring)thickness with EGR are more than twice but the wear rate of oil ring thickness without EGR is more increased than that with EGR and finally the wear rate of piston skirt with EGR is a little bit increased but the piston hed diameter is rather increased owing to soot adhesion and corrosion wear and espe-cially larger with EGR.

  • PDF

Speed Control for Low Speed Diesel Engine by Hybrid F-NFC (Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어)

  • Choi, G.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

Experimental Study on Reduction of Emissions for Marine Diesel Engines with a Double Post Injection (선박용 디젤엔진에서 이단지연분사에 따른 배기 배출물 저감에 관한 실험 연구)

  • Lee, Won-Ju;Choi, Jae-Hyuk;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.418-424
    • /
    • 2015
  • Marine Environment Protection Committee of the International Maritime Organization has decided to reinforce the NOx emission standards for ships passing an ECA(Emission Control Area) with Tier III standards from January 1, 2016. In this study, real-time measurements of the exhaust gas, cylinder pressure and fuel consumption were conducted at each load of a T/S Hanbada main engine of Korea Maritime and Ocean University, which is controlled by single injection and double post injection for reducing NOx emissions. The results showed that the quantity of CO2 and NOx increased in proportion to the engine load, whereas the CO concentration was inversely proportional to the engine load. In addition, double post injection decreased 10 % of P-max and reduced 25~30 % of the NOx emissions compared to single injection, whereas there was a trade-off relation, such as increase 3~5 % of SFOC (Specific Fuel Oil Consumption).

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

Use of dynamic absorber for reduction of shaft vibration in diesel engines of ship (축계진동 저감을 위한 동흡진기의 제안)

  • Park, Sok-Chu;Park, Kyung-Il;Kim, Jeong-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.743-748
    • /
    • 2016
  • Ship's diesel engines have intrinsic problem to make vibrations caused by cylinder explosion and unbalanced rotating mass. These vibrations might induce noises, are transferred to hull and neighboring structures and cause secondary vibrations. This paper suggests the use of an additional dynamic absorber with a sub-vibration system to reduce the aforementioned vibrations. This dynamic absorber is designed based on an analysis of the free vibration of the engine shafting system and the forced vibrations.

Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines (함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향)

  • Son, Min-Soo;Choi, Jae-Sung;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.180-184
    • /
    • 2016
  • Legislative and regulatory actions regarding the exhaust gas from ships are being strengthened by both international organizations and national governments, to protect human health and the environment. Exhaust gas traps are excluded from exhaust gas regulation applications, but, recently, the United States, Britain, and other developed countries have examined a variety of ways to improve the system, including the introduction of electric propulsion systems to prevent air pollution generated by naval ships. This study investigates a large number of smoke problems of naval diesel engines to verify the effect of improving the nozzle characteristics. An exhaust gas emission measurement method to determine the quality of pollutant exhaust gas generated during low-load operation is proposed through the research methodology of the smoke problem. It was confirmed that the emissions value is improved by decreasing the nozzle hole diameter and increasing the injection pressure. At the same time, the flow rate decrease equation and setting up a test memo based on the nozzle diameter confirmed that the fuel consumption, to which the nozzle diameter in the flow path is related, is reduced.

A study on performance comparison of jacket cooling fresh water system for marine diesel engine (선박용 디젤기관의 재킷 냉각청수시스템 성능 비교에 관한 연구)

  • Kim, Duk-Kyung;Lee, Jae-Hyun;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Due to the financial crisis in 2008, the world economy collapsed leading to an increase in oil prices and a decrease in freight by shipping. To overcome this crisis, major shipping companies ordered larger ships, changed their trading route and improved operating of ships to overcome deficits. In particular, low-speed navigation was much favored by many companies so that it can reduce fuel consumption. However, the long-term operation of high-speed optimized engines in low-speeds has affected the jacket cooling fresh water (J.C.F.W.) system as they fail to maintain the normal operational temperature. The temperature of J.C.F.W. system dropped leading to low temperature corrosion. As a result, when the engine is operating at minimal load the functioning of existing J.C.F.W cooler is decreased and the use of fresh water generator is substantially limited. Therefore, an improvement in the functioning of J.C.F.W. system is necessary. In this paper, in order to review the improvements required for the operation of J.C.F.W. of low-speed operating marine diesel, an experiment was conducted by comparing and analyzing the results of the main engine J.C.F.W. system of a Panamax class bulk carrier 82k and a Cape class bulk carrier 180k by installing and uninstalling the J.C.F.W. Cooler. Thus, this paper proposed an improved design of the J.C.F.W. system that is suitable for the present low-speed operation.