DOI QR코드

DOI QR Code

Analysis on the Technology R&D of the Fuel Cell Systems for Power Generation in Ships

선박 동력발생용 연료전지시스템 기술개발의 전망에 대한 고찰

  • 김명환 (한국해양대학교 기관시스템공학부)
  • Published : 2007.11.30

Abstract

Now, there are two big issues threatening global society, which are the depletion of fossil fuels and the environmental disruption. Therefore, marine diesel engine, taking up over 95% share of the marine power market, has met the environmental and economical problems, too. These problems have caused a necessity of new, alternative power systems in ships and fuel cell systems has been playing a central role as one of the alternatives. This paper analyzes the characteristics of marine fuel cell systems, R&D trends of advanced countries, and mapping out R&D strategy of Korea.

Keywords

References

  1. W. H. Kumm, 'Marine and Naval Applications of Fuel Cells for Propulsion: the Process Selection', Journal of Power Sources, Vol. 29, pp. 169-179, 1990 https://doi.org/10.1016/0378-7753(90)80017-8
  2. V. W. Adams, 'Possible Fuel Cell Applications for Ships and Submarines', Journal of Power Sources, Vol. 29, pp. 181-192, 1990
  3. G. Sattler, 'Fuel Cells Going On-board', Journal of Power Sources, Vol. 86, pp. 61-67, 2000 https://doi.org/10.1016/S0378-7753(99)00414-0
  4. C. Bourne, T. Nietsch, D. Griffiths, J. Morley, 'Application of Fuel Cells in Surface Ships', DTI/Pub URN 01/902, Rolls-Royce Strategic Systems Engineering, 2001
  5. M. Altmann, M. Weinberger, W. Weindorf, 'Life Cycle Analysis Results of Fuel Cell Ships', EU Project Contract No. G3RD-CT-2002-00823, Report No. DTR-4.5-LBST-05.2004, 2004
  6. T. Tronstad, J. Byrknes, 'Fuel Cells in Ships: Safety & Reliability', Proc. of the 1st European Hydrogen Energy Conference, 2004
  7. N. Rattenbury, E. Fort, 'Development of Requirements for Fuel Cells in the Marine Environment - Performance and Prescription', Lloyd's Register Technical Papers, 2006
  8. R. M. Privette, T. J Flynn, M. A. Perna, R. Holland, R. Rahmani, C. Woodburn, S. W. Scoles, R. C. Watson, 'PEM Fuel Cell System Evaluation for Navy Surface Ship Application', Proc. of the 34th Intersociety Energy Conversion Engineering Conference, Canada, 1999
  9. R. O'Rourke, 'Navy Ship Propulsion Technologies: Options for Reducing Oil Use - Background for Congress', CRS Report for Congress, Code No. RL33360, 2006
  10. John J. Mcmullen Associates, Inc., Final Report, 'Development of a Hybrid Fuel Cell Ferry', Water Transit Authority, 2003
  11. G. Sattler, 'PEFCs for Naval Ships and Submarines', Journal of Power Sources, Vol. 71, pp. 144-149, 1998 https://doi.org/10.1016/S0378-7753(97)02717-1
  12. European Commission, 'Fuel Cells in Ships - Synthesis of Open Problems and Roadmap for Future RTD', EU Project Contract No. G3RD-CT-2002- 00823, Report No. DTR-5.2-06.2004, 2004
  13. O . Endresen, T. Tronstad, 'Cost Calculations of Fuel Cells in Ships', FellowSHIP Project Report No. 1-1.3C-D-2003-01, 2003
  14. O. Endresen, T. Tronstad, 'Emission Reductions by Fuel Cell Ships', FellowSHIP Project Report No. 1-1.3B-D-2003-01, 2003
  15. M. Reenaas, 'Solid Oxide Fuel Cell Combined with Gas Turbine Versus Diesel Engine as Auxiliary Power Producing Unit Onboard a Passenger Ferry: a Comparative Life Cycle Assessment and Life Cycle Cost Assessment', Master Thesis of NTNU, Norway, 2005
  16. IHI, 'Applications of Fuel Cells to Surface Ship Propulsion Systems', IHI Engineering Review, Vol. 26, No. 4, 1993
  17. T. Maeda, S. Ishiguro, K. Yokoyama, K. Hirokawa, A. Hashimoto, Y. Okuda, T. Tani, 'Development of Fuel Cell AUV URASHIMA', Mitsubishi Heavy Industries, Ltd. Technical Review, Vol. 41, No. 6, 2004

Cited by

  1. Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications vol.36, pp.8, 2012, https://doi.org/10.5916/jkosme.2012.36.8.1050
  2. Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics vol.21, pp.4, 2015, https://doi.org/10.7464/ksct.2015.21.4.229
  3. The Effect of Liquid Water in Fuel Cell Cathode Gas Diffusion Layer on Fuel Cell Performance vol.39, pp.4, 2015, https://doi.org/10.5916/jkosme.2015.39.4.374
  4. Availability of SOFC systems equipped with a recycled steam reforming fuel processor vol.40, pp.7, 2016, https://doi.org/10.5916/jkosme.2016.40.7.569
  5. 프로펠러 레이싱에 대비한 SOFC/GT 하이브리드시스템의 대책 방안에 관한 기초적 연구 vol.32, pp.2, 2007, https://doi.org/10.5916/jkosme.2008.32.2.256
  6. SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구 vol.32, pp.2, 2007, https://doi.org/10.5916/jkosme.2008.32.2.284
  7. 선박동력용 SOFC시스템의 성능 및 안전성 해석 vol.33, pp.2, 2009, https://doi.org/10.5916/jkosme.2009.33.2.233
  8. 선박동력용 SOFC/GT 하이브리드시스템의 성능 및 안전성 해석 (터빈 냉각 및 TIT 일정 조건을 중심으로) vol.33, pp.4, 2007, https://doi.org/10.5916/jkosme.2009.33.4.484
  9. 선박동력용 SOFC/GT 하이브리드시스템의 성능 평가 (터빈 냉각 및 공기극 입구온도 일정 조건을 중심으로) vol.33, pp.8, 2009, https://doi.org/10.5916/jkosme.2009.33.8.1107
  10. 메탄올 연료형 SOFC 시스템의 성능 평가 vol.34, pp.4, 2007, https://doi.org/10.5916/jkosme.2010.34.4.448
  11. 메탄올 연료형 SOFC/GT 하이브리드시스템의 성능 평가 vol.34, pp.8, 2010, https://doi.org/10.5916/jkosme.2010.34.8.1040
  12. 선박용 연료전지 시스템 도입을 위한 국제 표준화 동향 분석 vol.20, pp.5, 2007, https://doi.org/10.7837/kosomes.2014.20.5.579
  13. 소형선박용 고분자 전해질 연료전지 스택 모델 개발 vol.42, pp.6, 2007, https://doi.org/10.5916/jkosme.2018.42.6.413