• Title/Summary/Keyword: marine bridge

Search Result 253, Processing Time 0.028 seconds

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Research of Steel Corrosion and Corrosion Protection System for Reinforcing Steels in Concrete Exposed to Chloride Environments. (염해환경하 철근콘크리트의 철근 부식 및 방식기법 연구)

  • 문홍식;이상국;송호진;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.653-658
    • /
    • 2001
  • Recent long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. Thus, it needs to analyze the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steel in concrete is one of the major factors for the durability of concrete structures. The objective of this experimental study is to investigate the performance of impressed current system and corrosion inhibitors for the corrosion protection of reinforced concrete structures. Concrete test specimens were made with various test parameters, such as cover depth, steel diameter, compressive strength, direction and frequency of notch. For the efficient evaluation of these corrosion protection systems, these tests have been carried out in the shore.

  • PDF

A bridge-vessel collision force of steel fender system (강재 충돌방호공의 선박충돌력산정)

  • Lee Gye Hee;Ko Jae Yong;Yu Won Jin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.127-133
    • /
    • 2003
  • In this study, the impact analysis for the steel fender system that designed for protection of collision between vessel and bridge was performed The size of objective collision vessel assumed as 3000 dead weight tonnage(DWT). The impact forces and the impact energies were estimated by formulas of several design codes, and the steel fender system was designed based on the estimated forces and energy. The bow of objective vessel was modeled as rigid body, and bridge substructure was modeled as fixed support. Since, the impact analysis have the dynamic nonlinear features, such as, material nonlinear, large deformation and contact, explicit structural analysis program was used The analysis results presented that the impact forces formulas in codes have the sufficient conservativeness.

  • PDF

The Characteristics of Strength of Concrete Specimens under Tidal Environment (해양환경에 폭로된 콘크리트 실험체의 역학적 특성)

  • Lee, Joon-Gu;Kim, Meyong-Won;Kim, Kwan-Ho;Joo, Jae-Hong;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.277-278
    • /
    • 2009
  • The building that supply tidal and splash zone was constructed near Seamangeum Gate Bridge. The specimens that will be tested for maintenance of gate bridge were exposed on the tidal and splash zone, totally about 650(Fig. 1). The characteristics of strength, salt penetration profile, field application of surface repair material and section recover material will be acquired by periodical test. The program was developed to obtain optimal maintenance strategy of gate bridge as a marine concrete structure and to deposit experimental data, lab. test result, field test result, on its D/B. On this paper, we hope to introduce two years exposure data as compressive strength, the modulus of elasticity, the modulus of dynamic elasticity, field adoption of repair and recover materials. As briefly speaking the results, possion's ratio, elasticity, strength was general, but the recover materials have some problems. There was crack between concrete and recover material and delamination figures.

  • PDF

Development of a Machine Learning-Based Model for the Prediction of Chloride Diffusion Coefficient Using Concrete Bridge Data Exposed to Marine Environments (기계학습 기반 해양 노출 환경의 콘크리트 교량 데이터를 활용한 염화물 확산계수 예측모델 개발)

  • Woo-Suk Nam;Hong-Jae Yim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.20-29
    • /
    • 2024
  • The chloride diffusion coefficient is a critical indicator for assessing the durability of concrete marine substructures. This study develops a prediction model for the chloride diffusion coefficient using data from concrete bridges located in marine exposure zones (atmospheric, splash, tidal), an aspect that has not been considered in previous studies. Chloride profile data obtained from these bridge substructures were utilized. After data preprocessing, machine learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN), were optimized through hyperparameter tuning. The performance of these models was developed and compared under three different variable sets. The first model uses six variables: water-to-binder (W/B) ratio, cement type, coarse aggregate volume ratio, service life, strength, and exposure environment. The second model excludes the exposure environment, using only the remaining five variables. The third model relies on just three variables: service life, strength, and exposure environment factors that can be obtained from precision safety diagnostics. The results indicate that including the exposure environment significantly enhances model performance for predicting the chloride diffusion coefficient in concrete bridges in marine environments. Additionally, the three variable model demonstrates that effective predictions can be made using only data from precision safety diagnostics.

Molecular cloning and expression analysis of a C-type lectin in the rock bream, Oplegnathus fasciatus

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • C-type lectins are crucial for pathogen recognition, innate immunity, and cell-cell interactions. In this study, a C-type lectin gene was cloned from the rock bream. The full-length RbCTL cDNA was 729 bp with a 429 bp ORF encoding a 164-residue protein. The deduced amino acid sequence of RbCTL had all of the conserved features crucial for its fundamental structure, including the four cysteine residues involved in sulfide bridge formation and potential $Ca^2+$/carbohydrate-binding sites. RbCTL contains a signal peptide one single carbohydrate recognition domain. It showed 29.4% similarity to the C-type lectin of rainbow trout. RbCTL mRNA was predominately expressed in gill and head-kidney tissue and expressed less in peripheral blood leukocytes, trunk-kidney, spleen, liver, intestine and muscle. Expression of RbCTL was differentially upregulated in rock bream stimulated with LPS, Con A/PMA and poly I:C.

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

A Study on the Optimal Width of the Main Span in the 2nd Bridge of Incheon(1) Evaluation on the Optimal Width of the Main Span according to Traffic Volume and Ship Maneuverability (인천항 제2연륙교 적정 주경간 폭 결정에 관한 연구(1) 교통량 측면과 선박 조종성 측면에서의 소요 교각폭 산정)

  • Koo Ja-Yun;Kim Seok-Jae;Jang Eun-Kyu;Kim Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.933-940
    • /
    • 2004
  • A construction project of Incheon 2nd bridge, which is connected between the Incheon Song-Do New Town and the Incheon International Airport in Young-Jong-Do, has been proposed by the private capital in 1999. But the optimal width of the main span has not been decided in spite of the three investigations into the feasibility of ship's safe transit in this planned bridge. In this paper, we study the optimal width of the main span according to the traffic volume in the future traffic and the ship maneuverability of maximum size aspect. The result of this study, the channel in the main span of Incheon 2nd bridge is required to design two-way traffic scheme and the width of 1,000m, which will satisfy the safe transit from the viewpoint of the traffic volume in the future traffic and the ship maneuverability of maximum size.