• Title/Summary/Keyword: marine biofilm

Search Result 32, Processing Time 0.037 seconds

Screening of Anti-Biofilm Compounds from Marine-Derived Fungi and the Effects of Secalonic Acid D on Staphylococcus aureus Biofilm

  • Wang, Jie;Nong, Xu-Hua;Zhang, Xiao-Yong;Xu, Xin-Ya;Amin, Muhammad;Qi, Shu-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1078-1089
    • /
    • 2017
  • Biofilm formation of Staphylococcus aureus is one of its mechanisms of drug resistance. Anti-biofilm screening of 106 compounds from marine-derived fungi displayed that 12 compounds inhibited S. aureus biofilm formation by >50% at the concentration of $100{\mu}g/ml$, and only secalonic acid D (SAD) and B inhibited by >90% at $6.25{\mu}g/ml$ without inhibiting cell growth after 24-h incubation. Meanwhile, it was found that the double bond between C-1 and C-10 of citrinin derivatives and the C-C connection position of two chromone monomers may be important for their anti-biofilm activities. Moreover, SAD slightly facilitated biofilm eradication and influenced its architecture. Furthermore, SAD slowed the cell growth rate in the preceding 18-h incubation and differentially regulated transcriptional expression of several genes, such as agr, isaA, icaA, and icaD, associated with biofilm formation in planktonic and biofilm cells, which may be the reason for the anti-biofilm activity of SAD. Finally, SAD acted synergistically against S. aureus growth and biofilm formation with other antibiotics. These findings indicated that various natural products from marine-derived fungi, such as SAD, could be used as a potential biofilm inhibitor against S. aureus.

Inhibitory Effect of Transition Metal Gallium [Ga(NO3)3] on Biofilm Formation by Fish Pathogens (전이금속 갈륨(Ga(NO3)3)을 이용한 biofilm을 형성하는 어류질병세균의 억제)

  • Kim, Dong-Hwi;Dharaneedharan, Subramanian;Jang, Young-Hwan;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.535-539
    • /
    • 2016
  • The prevalence of pathogenic bacteria such as Streptococcus parauberis (Sp), Streptococcus iniae (Si), and Edwardsiella tarda (Et) in flounder fish farms in Jeju Island and their management by gallium treatment was studied. Sp, Si, and Et were found to exhibit a low rate of cell growth and high biofilm formation. Hence, in the present study, cell growth and biofilm formation were measured spectrophotometrically 72 h after the addition of different concentrations of gallium (2, 4, or 8 mg/ml). In addition, cell death was measured by resazurin and propidium iodide staining assays. The results showed that bacterial cell death increased and biofilm formation decreased with an increasing concentration of gallium. Hence, the present study signifies that the use of gallium against bacterial pathogens could be useful for disease management in flounder farms.

Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes

  • Jeong, Dawoon;Lee, Chang-Ha;Lee, Seockheon;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.395-404
    • /
    • 2019
  • The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with $0.2mg-Cl_2/L$ chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg $Cl_2/L$). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.

Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles (식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해)

  • Do Kyung Oh;Fazlurrahman Khan;Seul-Ki Park;Du-Min Jo;Kyung-Jin Cho;Geum-Jae Jeong;Yeon-Ju Sim;Jeong Mi Choi;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

Comparisons of growth and biofilm production with Vibrio fluvialis and mutants deficient in oligopeptide permease gene (Vibrio fluvialis의 Oligopeptide Permease Gene 결손에 의한 생육과 Biofilm 생산의 비교)

  • Lee, Eun Mi;Ahn, Sun Hee;Kong, In Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.84-90
    • /
    • 2006
  • Various ${\Delta}opp$ mutants of Vibrio fluvialis were constructed by allelic exchange method. The mutants occurred in target genes were confirmed by PCR and Southern hybridization analyses. After the exact mutants were identified, cell growth and biofilm production were examined using the respective mutants. The growth of wild strain was more rapid than mutants within 4hr incubation. Thereafter, the growth of wild strain and mutants reached to same level. When the productivities of wild strain and mutants were examined, ${\Delta}oppA$ mutant showed the highest productivity. Though ${\Delta}oppC,D$ and F mutants produced the lower production than that of ${\Delta}oppA$ mutant, the productivities of those mutants were much higher than that of wild strain.

  • PDF

Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment (남극 해양에서 생물막 생성 초기 단계의 세균 군집 구조 변화)

  • Lee, Yung Mi;Cho, Kyung Hee;Hwang, Kyuin;Kim, Eun Hye;Kim, Mincheol;Hong, Soon Gyu;Lee, Hong Kum
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.49-58
    • /
    • 2016
  • Compared to planktonic bacterial populations, biofilms have distinct bacterial community structures and play important ecological roles in various aquatic environments. Despite their ecological importance in nature, bacterial community structure and its succession during biofilm development in the Antarctic marine environment have not been elucidated. In this study, the succession of bacterial community, particularly during the early stage of biofilm development, in the Antarctic marine environment was investigated by pyrosequencing of the 16S rRNA gene. Overall bacterial distribution in biofilms differed considerably from surrounding seawater. Relative abundance of Gammaproteobacteria and Bacteroidetes which accounted for 78.9-88.3% of bacterial community changed drastically during biofilm succession. Gammaproteobacteria became more abundant with proceeding succession (75.7% on day 4) and decreased to 46.1% on day 7. The relative abundance of Bacteroidetes showed opposite trend to Gammaproteobacteria, decreasing from the early days to the intermediate days and becoming more abundant in the later days. There were striking differences in the composition of major OTUs (${\geq}1%$) among samples during the early stages of biofilm formation. Gammaproteobacterial species increased until day 4, while members of Bacteroidetes, the most dominant group on day 1, decreased until day 4 and then increased again. Interestingly, Pseudoalteromonas prydzensis was predominant, accounting for up to 67.4% of the biofilm bacterial community and indicating its important roles in the biofilm development.

Isolation and Identification of Biofilm-Forming Marine Bacteria on Glass Surfaces in Dae-Ho Dike, Korea

  • Kwon, Kae-Kyoung;Lee, Hyun-Sang;Jung, Sung-Young;Yim, Joung-Han;Lee, Jung-Hyun;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • Bacterial strains were isolated from biofilms formed on glass slides submerged in seawater in Dae-Ho Dike. Eight strains showing fast attaching ability were selected and identified. Their exopolysaccharide (EPS)-producing ability and EPS properties were characterized. Based on Microlog System, 4 among the 8 strains were identified as Micrococcus luteus and the rest were Bacillus thuringiensis, Bacillus megaterium,, Staphylococcus saprophyticus and Agrobacterium vitis. A, vitis was reidentified as Sulfitobacter pontiacus based on 16S rDNA sequence data. The amount of water-soluble EPS produced by the 8 strains ranged from 0.114 to 1.329 g$.$l$\^$-1/ and the productivity was negatively correlated with the cell biomass. The molecular weight of the produced EPS ranged from 0.38 to 25.19$\times$10$\^$4/ Da. Glucose and galactose were ubiquitous sugar components. Mannose, ribose, and xylose were also major sugar components. The molecular weight and composition of the EPS showed strain-specific variation.

Oral Pathogens and Their Antibiotics from Marine Organisms: A Systematic Review of New Drugs for Novel Drug Targets

  • Sehyeok Im;Jun Hyuck Lee;Youn-Soo Shim
    • Journal of dental hygiene science
    • /
    • v.24 no.2
    • /
    • pp.84-96
    • /
    • 2024
  • Background: Recent studies have elucidated the quorum-sensing mechanisms, biofilm formation, inter-pathogen interactions, and genes related to oral pathogens. This review aims to explore the recent expansion of drug targets against oral pathogens and summarize the current research on novel antibiotic substances derived from marine organisms that target oral pathogens. Methods: A comprehensive literature review summarized the novel mechanisms pertaining to quorum-sensing signal transmission systems, biofilm formation, and metabolite exchange in oral pathogens. The amino acid sequences of the 16 proteins identified as potential drug targets were systematically classified and compared across various oral microorganisms. Results: Through a literature review, we identified nine studies researching quorum sensing signaling inhibitors targeting oral pathogens. A comparison of the amino acid sequences of 16 potential drug targets in oral microorganisms revealed significant differences between oral pathogens and beneficial oral symbiotic microorganisms. These findings imply that it is possible to design drugs that can bind more selectively to oral pathogens. Conclusion: By summarizing the results of recent research on the signaling mechanisms that cause pathogenicity, new drug targets against oral pathogens were proposed. Additionally, the current status of developing new antibiotics for oral pathogens using recently developed quorum sensing inhibitors and natural products derived from marine organisms was introduced. Consequently, marine natural products can be used to develop drugs targeting new proteins in oral pathogens.