Browse > Article
http://dx.doi.org/10.4014/jmb.1609.09053

Screening of Anti-Biofilm Compounds from Marine-Derived Fungi and the Effects of Secalonic Acid D on Staphylococcus aureus Biofilm  

Wang, Jie (Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Nong, Xu-Hua (Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Zhang, Xiao-Yong (Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Xu, Xin-Ya (Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Amin, Muhammad (Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Qi, Shu-Hua (Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Material Medical, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.6, 2017 , pp. 1078-1089 More about this Journal
Abstract
Biofilm formation of Staphylococcus aureus is one of its mechanisms of drug resistance. Anti-biofilm screening of 106 compounds from marine-derived fungi displayed that 12 compounds inhibited S. aureus biofilm formation by >50% at the concentration of $100{\mu}g/ml$, and only secalonic acid D (SAD) and B inhibited by >90% at $6.25{\mu}g/ml$ without inhibiting cell growth after 24-h incubation. Meanwhile, it was found that the double bond between C-1 and C-10 of citrinin derivatives and the C-C connection position of two chromone monomers may be important for their anti-biofilm activities. Moreover, SAD slightly facilitated biofilm eradication and influenced its architecture. Furthermore, SAD slowed the cell growth rate in the preceding 18-h incubation and differentially regulated transcriptional expression of several genes, such as agr, isaA, icaA, and icaD, associated with biofilm formation in planktonic and biofilm cells, which may be the reason for the anti-biofilm activity of SAD. Finally, SAD acted synergistically against S. aureus growth and biofilm formation with other antibiotics. These findings indicated that various natural products from marine-derived fungi, such as SAD, could be used as a potential biofilm inhibitor against S. aureus.
Keywords
Anti-biofilm activity; Staphylococcus aureus; marine natural product; secalonic acid D; mechanism of action;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J. 2011. Anti-biofilm compounds derived from marine sponges. Mar. Drugs 9: 2010-2035.   DOI
2 Armstrong E, Boyd KG, Burgess JG. 2000. Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol. Annu. Rev. 6: 221-241.
3 Donia M, Hamann MT. 2003. Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 3: 338-348.   DOI
4 Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J. 2013. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29: 491-499.   DOI
5 Park JH, Lee JH, Kim CJ, Lee JC, Cho MH, Lee J. 2012. Extracellular protease in actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnol. Lett. 34: 655-661.   DOI
6 Hertiani T, Edrada-Ebel R, Ortlepp S, van Soest RWM, de Voogd NJ, Wray V, et al. 2010. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem. 18: 1297-1311.   DOI
7 Huigens RW III, Richards JJ, Parise G, Ballard TE, Zeng W, Deora R, et al. 2007. Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J. Am. Chem. Soc. 129: 6966-6967.   DOI
8 Melander C, Moeller PDR, Ballard TE, Richards JJ, Huigens RW III, Cavanagh J. 2009. Evaluation of dihydrooroidin as an antifouling additive in marine paint. Int. Biodeterior. Biodegrad. 63: 529-532.   DOI
9 Richards JJ, Huigens RW III, Ballard TE, Basso A, Cavanagh J, Melander C. 2008. Inhibition and dispersion of proteobacterial biofilms. Chem. Commun. (Camb.) 14: 1698-1700.
10 Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6: 199-210.   DOI
11 O'Gara JP. 2007. ica and beyond: biofilm mechanisms and regulation in Staphyloccus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 270: 179-188.   DOI
12 Mootz JM, Malone CL, Shaw LN, Horswill AR. 2013. Staphopains modulate Staphylococcus aureus biofilm integrity. Infect. Immun. 81: 3227-3238.   DOI
13 Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO, Horswill AR. 2014. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 9: e95574.   DOI
14 Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 67: 5427-5433.
15 Lauderdale KJ, Boles BR, Cheung AL, Horswill AR. 2009. Interconnections between sigma B, agr and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect. Immun. 77: 1623-1635.   DOI
16 Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4: e5822.   DOI
17 Rogers SA, Huigens RW III, Cavanagh J, Melander C. 2010. Synergistic effects between conventional antibiotics and 2- aminoimidazole-derived antibiofilm agents. Antimicrob. Agents Chemother. 54: 2112-2118.   DOI
18 Skindersoe M, Ettinger-Epstein P, Rasmussen T, Bjarnsholt T, de Nys R, Givskov M. 2008. Quorum sensing antagonism from marine organisms. Mar. Biotechnol. 10: 56-63.   DOI
19 Boles BR, Horswill AR. 2011. Staphylococcal biofilm disassembly. Trends Microbiol. 19: 449-455.   DOI
20 Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, et al. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104: 8113-8118.   DOI
21 Wang D, Jin Q, Xiang H, Wang W, Guo N, Zhang K, et al. 2011. Transcriptional and functional analysis of the effects of magnolol: inhibition of autolysis and biofilms in Staphylococcus aureus. PLoS One 6: e26833.   DOI
22 Rogers SA, Huigens RW III, Melander C. 2009. A 2-amino benzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J. Am. Chem. Soc. 131: 9868-9869.   DOI
23 do Valle Gomes MZ, Nitschke M. 2012. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25: 441-447.   DOI
24 Bao J, Sun YL, Zhang XY, Han Z, Gao HC, He F, et al. 2013. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. J. Antibiot. 66: 219-223.   DOI
25 Zhou G, Li L, Shi Q, Ouyang Y, Chen Y, Hu W. 2013. Effect of nutritional and environmental conditions on planktonic growth and biofilm formation of Citrobacter werkmanii BF-6. J. Microbiol. Biotechnol. 23: 1673-1682.   DOI
26 Dong JJ, Bao J, Zhang XY, Xu XY, Nong XH, Qi SH. 2014. Alkaloids and citrinins from marine-derived fungus Nigrospora oryzae SCSGAF 0111. Tetrahedron Lett. 55: 2749-2753.   DOI
27 Bao J, Xu XY, Zhang XY, Qi SH. 2013. A new macrolide from a marine-derived fungus Asperillus sp. Nat. Prod. Commun. 8: 1127-1128.
28 Bao J, Zhang XY, Xu XY, He F, Nong XH, Qi SH. 2013. New cyclic tetrapeptides and asteltoxins from gorgonian-derived fungus Aspergillus sp. SCSGAF 0076. Tetrahedron 69: 2113-2117.   DOI
29 Yao QF, Wang J, Zhang XY, Nong XH, Xu XY, Qi SH. 2014. Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar. Drugs 12: 5902-5915.   DOI
30 Peng J, Zhang XY, Tu ZC, Xu XY, Qi SH. 2013. Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSCS013. J. Nat. Prod. 76: 983-987.   DOI
31 Shukla SK, Rao TS. 2013. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study. Colloids Surf. B 103: 448-454.   DOI
32 Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersholl BK, et al. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395-2407.   DOI
33 Sharks RM, Meehl MA, Brothers KM, Martinez RM, Donegan NP, Graber ML, et al. 2008. Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infect. Immun. 76: 2469-2477.   DOI
34 Coenye T, Honraet K, Rigole P, Nadal JP, Nelis HJ. 2007. In vitro inhibition of Streptococcus mutans biofilm formation on hydroxyapatite by subinhibitory concentrations of anthraquinones. Antimicrob. Agents Chemother. 51: 1541-1544.   DOI
35 Guo N, Zhao X, Li W, Shi C, Meng R, Liu Z, et al. 2015. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures. J. Med. Microbiol. 64: 891-900.   DOI
36 Ohlsen K, Koller KP, Hacker J. 1997. Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla::lacZ gene fusion. Infect. Immun. 65: 3606-3614.
37 Lee J, Kim Y, Ryu S, Lee J. 2016. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep. 6: 19267.   DOI
38 Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.   DOI
39 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{−{\Delta}{\Delta}Ct}$ method. Methods 25: 402-408.   DOI
40 Tang QY, Feng MG. 2007. Statistical analysis of the test, pp. 59-142. In Yan DP, Zhao YC, Yang R (eds.). DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining. Science Press, Beijing. China.
41 Liu C, Tang X, Li P, Li G. 2012. Suberitine A-D, four new cytotoxic dimeric aaptamine alkaloids from the marine sponge Aaptos suberitoides. Org. Lett. 14: 1994-1997.   DOI
42 Boles BR, Horswill AR. 2008. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4: e1000052.   DOI
43 Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR. 2013. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect. Immun. 81: 496-504.   DOI
44 Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, et al. 2012. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. USA 109: 1281-1286.   DOI
45 Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. 2004. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186: 1838-1850.   DOI
46 Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I, et al. 2010. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect. 12: 55-64.   DOI