• Title/Summary/Keyword: mapping algorithms

Search Result 367, Processing Time 0.03 seconds

Application of Opposition-based Differential Evolution Algorithm to Generation Expansion Planning Problem

  • Karthikeyan, K.;Kannan, S.;Baskar, S.;Thangaraj, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.686-693
    • /
    • 2013
  • Generation Expansion Planning (GEP) is one of the most important decision-making activities in electric utilities. Least-cost GEP is to determine the minimum-cost capacity addition plan (i.e., the type and number of candidate plants) that meets forecasted demand within a pre specified reliability criterion over a planning horizon. In this paper, Differential Evolution (DE), and Opposition-based Differential Evolution (ODE) algorithms have been applied to the GEP problem. The original GEP problem has been modified by incorporating Virtual Mapping Procedure (VMP). The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units have been considered. The results have been compared with Dynamic Programming (DP) method. The ODE performs well and converges faster than DE.

Autonomous Navigation System of an Unmanned Aerial Vehicle for Structural Inspection (무인 구조물 검사를 위한 자율 비행 시스템)

  • Jung, Sungwook;Choi, Duckyu;Song, Seungwon;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.216-222
    • /
    • 2021
  • Recently, various robots are being used for the purpose of structural inspection or safety diagnosis, and their needs are also rising rapidly. Among the structural inspection using robots, a lot of researches has recently been conducted on inspection of various facilities and structures using an unmanned aerial vehicle (UAV). However, since GNSS (Global Navigation Satellite System) signals cannot be received in an environment near or below structures, the operation of UAVs has been done manually. For a stable autonomous flight without GNSS signals, additional technologies are required. This paper proposes the autonomous flight system for structural inspection consisting of simultaneous localization and mapping (SLAM), path planning, and controls. The experiments were conducted on an actual large bridge to verify the feasibility of the system, and especially the performance of the proposed SLAM algorithm was compared through comparative analysis with the state-of-the-art algorithms.

ON GENERALIZED (𝛼, 𝛽)-NONEXPANSIVE MAPPINGS IN BANACH SPACES WITH APPLICATIONS

  • Akutsah, F.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.663-684
    • /
    • 2021
  • In this paper, we present some fixed point results for a general class of nonexpansive mappings in the framework of Banach space and also proposed a new iterative scheme for approximating the fixed point of this class of mappings in the frame work of uniformly convex Banach spaces. Furthermore, we establish some basic properties and convergence results for our new class of mappings in uniformly convex Banach spaces. Finally, we present an application to nonlinear integral equation and also, a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature with different choices of parameters and initial guesses. The results obtained in this paper improve, extend and unify some related results in the literature.

Loosely Coupled LiDAR-visual Mapping and Navigation of AMR in Logistic Environments (실내 물류 환경에서 라이다-카메라 약결합 기반 맵핑 및 위치인식과 네비게이션 방법)

  • Choi, Byunghee;Kang, Gyeongsu;Roh, Yejin;Cho, Younggun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.397-406
    • /
    • 2022
  • This paper presents an autonomous mobile robot (AMR) system and operation algorithms for logistic and factory facilities without magnet-lines installation. Unlike widely used AMR systems, we propose an EKF-based loosely coupled fusion of LiDAR measurements and visual markers. Our method first constructs occupancy grid and visual marker map in the mapping process and utilizes prebuilt maps for precise localization. Also, we developed a waypoint-based navigation pipeline for robust autonomous operation in unconstrained environments. The proposed system estimates the robot pose using by updating the state with the fusion of visual marker and LiDAR measurements. Finally, we tested the proposed method in indoor environments and existing factory facilities for evaluation. In experimental results, this paper represents the performance of our system compared to the well-known LiDAR-based localization and navigation system.

HYBRID MONOTONE PROJECTION ALGORITHMS FOR ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE MAPPINGS

  • Wu, Changqun;Cho, Sun-Young
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • In this paper, we consider the hybrid monotone projection algorithm for asymptotically quasi-pseudocontractive mappings. A strong convergence theorem is established in the framework of Hilbert spaces. Our results mainly improve the corresponding results announced by [H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 3140-3145] and also include Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140-1152; Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008) 2828-2836] as special cases.

A DNA Sequence Alignment Algorithm Using Quality Information and a Fuzzy Inference Method (품질 정보와 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.55-68
    • /
    • 2007
  • DNA sequence alignment algorithms in computational molecular biology have been improved by diverse methods. In this paper, we proposed a DNA sequence alignment algorithm utilizing quality information and a fuzzy inference method utilizing characteristics of DNA sequence fragments and a fuzzy logic system in order to improve conventional DNA sequence alignment methods using DNA sequence quality information. In conventional algorithms, DNA sequence alignment scores were calculated by the global sequence alignment algorithm proposed by Needleman-Wunsch applying quality information of each DNA fragment. However, there may be errors in the process for calculating DNA sequence alignment scores in case of low quality of DNA fragment tips, because overall DNA sequence quality information are used. In the proposed method, exact DNA sequence alignment can be achieved in spite of low quality of DNA fragment tips by improvement of conventional algorithms using quality information. And also, mapping score parameters used to calculate DNA sequence alignment scores, are dynamically adjusted by the fuzzy logic system utilizing lengths of DNA fragments and frequencies of low quality DNA bases in the fragments. From the experiments by applying real genome data of NCBI (National Center for Biotechnology Information), we could see that the proposed method was more efficient than conventional algorithms using quality information in DNA sequence alignment.

  • PDF

Mathematical Algorithms for the Automatic Generation of Production Data of Free-Form Concrete Panels (비정형 콘크리트 패널의 생산데이터 자동생성을 위한 수학적 알고리즘)

  • Kim, Doyeong;Kim, Sunkuk;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • Thanks to the latest developments in digital architectural technologies, free-form designs that maximize the creativity of architects have rapidly increased. However, there are a lot of difficulties in forming various free-form curved surfaces. In panelizing to produce free forms, the methods of mesh, developable surface, tessellation and subdivision are applied. The process of applying such panelizing methods when producing free-form panels is complex, time-consuming and requires a vast amount of manpower when extracting production data. Therefore, algorithms are needed to quickly and systematically extract production data that are needed for panel production after a free-form building is designed. In this respect, the purpose of this study is to propose mathematical algorithms for the automatic generation of production data of free-form panels in consideration of the building model, performance of production equipment and pattern information. To accomplish this, mathematical algorithms were suggested upon panelizing, and production data for a CNC machine were extracted by mapping as free-form curved surfaces. The study's findings may contribute to improved productivity and reduced cost by realizing the automatic generation of data for production of free-form concrete panels.

Algorithmic music composition (알고리즘에 의한 음악의 작곡)

  • 윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.652-655
    • /
    • 1997
  • An exploration for an intelligence paradigm has been delineated. Artificial intelligence and artificial life paradigms seem to fail to show the whole picture of human intelligence. We may understand the human intelligence better by adding the emotional part of human intelligence to the intellectual part of human intelligence. Emotional intelligence is investigated in terms of composing machine as a modern abstract art. Various algorithmic composition and performance concepts are currently being investigated and implemented. Intelligent mapping algorithms restructure the traditional predetermined composition algorithms. Music based on fractals and neural networks is being composed. Also, emotional intelligence and aesthetic aspects of Korean traditional music are investigated in terms of fractal relationship. As a result, this exploration will greatly broaden the potentials of the intelligence research. The exploration of art in the view of intelligence, information and structure will restore the balanced sense, of art and science which seeks happiness in life. The investigations of emotional intelligence will establish the foundations of intelligence, information and control technologies.

  • PDF

Accelerating next generation sequencing data analysis: an evaluation of optimized best practices for Genome Analysis Toolkit algorithms

  • Franke, Karl R.;Crowgey, Erin L.
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.10.1-10.9
    • /
    • 2020
  • Advancements in next generation sequencing (NGS) technologies have significantly increased the translational use of genomics data in the medical field as well as the demand for computational infrastructure capable processing that data. To enhance the current understanding of software and hardware used to compute large scale human genomic datasets (NGS), the performance and accuracy of optimized versions of GATK algorithms, including Parabricks and Sentieon, were compared to the results of the original application (GATK V4.1.0, Intel x86 CPUs). Parabricks was able to process a 50× whole-genome sequencing library in under 3 h and Sentieon finished in under 8 h, whereas GATK v4.1.0 needed nearly 24 h. These results were achieved while maintaining greater than 99% accuracy and precision compared to stock GATK. Sentieon's somatic pipeline achieved similar results greater than 99%. Additionally, the IBM POWER9 CPU performed well on bioinformatic workloads when tested with 10 different tools for alignment/mapping.

Optimization-based humanoid robot navigation using monocular camera within indoor environment

  • Han, Young-Joong;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.446-457
    • /
    • 2018
  • Robot navigation allows robot mobility. Therefore, mobility is an area of robotics that has been actively investigated since robots were first developed. In recent years, interest in personal service robots for homes and public facilities has increased. As a result, robot navigation within the home environment, which is an indoor environment, is being actively investigated. However, the problem with conventional navigation algorithms is that they require a large computation time for their building mapping and path planning processes. This problem makes it difficult to cope with an environment that changes in real-time. Therefore, we propose a humanoid robot navigation algorithm consisting of an image processing and optimization algorithm. This algorithm realizes navigation with less computation time than conventional navigation algorithms using map building and path planning processes, and can cope with an environment that changes in real-time.